A Self-Adaptive Hybrid Genetic Algorithm for Data Mining Applications

Chuan-Hua Zhou, An-Shi Xie, Xin-Wei Xu, Bao-Hua Zhou, Zhang Feng
{"title":"A Self-Adaptive Hybrid Genetic Algorithm for Data Mining Applications","authors":"Chuan-Hua Zhou, An-Shi Xie, Xin-Wei Xu, Bao-Hua Zhou, Zhang Feng","doi":"10.1109/ICNC.2009.132","DOIUrl":null,"url":null,"abstract":"Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Many searching and optimization methods are used in data mining. In this paper we propose a Self-Adaptive Hybrid GA (SAHGA), where parameters of population size, crossover rate and mutation rate for each individual in each generation are adaptively fixed. Further, the crossover operator and mutation operator are decided dynamically. Finally, the tabu strategy is involved in the process of evolution. The three measures mentioned above help to maintain the diversity of the population and smooth over premature convergence. The effective performance of the algorithm is then shown using standard testbed functions and a set of classification datamining problems with UCI datasets based on Weka Platform.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Many searching and optimization methods are used in data mining. In this paper we propose a Self-Adaptive Hybrid GA (SAHGA), where parameters of population size, crossover rate and mutation rate for each individual in each generation are adaptively fixed. Further, the crossover operator and mutation operator are decided dynamically. Finally, the tabu strategy is involved in the process of evolution. The three measures mentioned above help to maintain the diversity of the population and smooth over premature convergence. The effective performance of the algorithm is then shown using standard testbed functions and a set of classification datamining problems with UCI datasets based on Weka Platform.
数据挖掘应用中的自适应混合遗传算法
数据挖掘涉及从大型数据库中提取知识或模式的重要过程。数据挖掘中使用了许多搜索和优化方法。本文提出了一种自适应杂交遗传算法(SAHGA),该算法的种群大小、杂交率和每一代个体的突变率参数自适应固定。此外,还动态确定了交叉算子和变异算子。最后,禁忌策略参与了进化的过程。上述三项措施有助于保持人口的多样性和平滑过早收敛。然后通过标准的测试平台函数和基于Weka平台的UCI数据集的分类数据挖掘问题,展示了该算法的有效性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信