Application of evolutionary algorithms to learning evolved Bayesian Network models of rig operations in the Gulf of Mexico

François A. Fournier, Yanghui Wu, J. Mccall, Andrei V. Petrovski, P. Barclay
{"title":"Application of evolutionary algorithms to learning evolved Bayesian Network models of rig operations in the Gulf of Mexico","authors":"François A. Fournier, Yanghui Wu, J. Mccall, Andrei V. Petrovski, P. Barclay","doi":"10.1109/UKCI.2010.5625588","DOIUrl":null,"url":null,"abstract":"The operation of drilling rigs is highly expensive. It is therefore important to be able to identify and analyse variables affecting rig operations. We investigate the use of Genetic Algorithms and Ant Colony Optimisation to induce a Bayesian Network model for the real world problem of Rig Operations Management and confirm the validity of our previous model. We explore the relative performances of different search and scoring heuristics and consider trade-offs between best network score and computation time from an industry standpoint. Finally, we analyse edge-discovery statistics over repeated runs to explain observed differences between the algorithms.","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The operation of drilling rigs is highly expensive. It is therefore important to be able to identify and analyse variables affecting rig operations. We investigate the use of Genetic Algorithms and Ant Colony Optimisation to induce a Bayesian Network model for the real world problem of Rig Operations Management and confirm the validity of our previous model. We explore the relative performances of different search and scoring heuristics and consider trade-offs between best network score and computation time from an industry standpoint. Finally, we analyse edge-discovery statistics over repeated runs to explain observed differences between the algorithms.
应用进化算法学习墨西哥湾钻井作业的进化贝叶斯网络模型
钻井平台的操作非常昂贵。因此,能够识别和分析影响钻井作业的变量非常重要。我们研究了遗传算法和蚁群优化的使用,为钻井作业管理的现实世界问题归纳了贝叶斯网络模型,并确认了我们之前模型的有效性。我们探索不同搜索和评分启发式的相对性能,并从行业的角度考虑最佳网络分数和计算时间之间的权衡。最后,我们分析了重复运行的边缘发现统计数据,以解释算法之间观察到的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信