Bernoulli polynomial and the numerical solution of high-order boundary value problems

M. El-Gamel, W. Adel, M. El-Azab
{"title":"Bernoulli polynomial and the numerical solution of high-order boundary value problems","authors":"M. El-Gamel, W. Adel, M. El-Azab","doi":"10.22436/MNS.04.01.05","DOIUrl":null,"url":null,"abstract":"In this work we present a fast and accurate numerical approach for the higher-order boundary value problems via Bernoulli collocation method. Properties of Bernoulli polynomial along with their operational matrices are presented which is used to reduce the problems to systems of either linear or nonlinear algebraic equations. Error analysis is included. Numerical examples illustrate the pertinent characteristic of the method and its applications to a wide variety of model problems. The results are compared to other methods.","PeriodicalId":443718,"journal":{"name":"Mathematics in Natural Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/MNS.04.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this work we present a fast and accurate numerical approach for the higher-order boundary value problems via Bernoulli collocation method. Properties of Bernoulli polynomial along with their operational matrices are presented which is used to reduce the problems to systems of either linear or nonlinear algebraic equations. Error analysis is included. Numerical examples illustrate the pertinent characteristic of the method and its applications to a wide variety of model problems. The results are compared to other methods.
伯努利多项式与高阶边值问题的数值解
本文利用伯努利配点法对高阶边值问题提出了一种快速、准确的数值求解方法。给出了伯努利多项式及其运算矩阵的性质,并将其用于将问题简化为线性或非线性代数方程组。包括误差分析。数值算例说明了该方法的相关特性及其在各种模型问题中的应用。结果与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信