Linear Classifier: An Often-Forgotten Baseline for Text Classification

Yu-Chen Lin, Si-An Chen, Jie-Jyun Liu, Chih-Jen Lin
{"title":"Linear Classifier: An Often-Forgotten Baseline for Text Classification","authors":"Yu-Chen Lin, Si-An Chen, Jie-Jyun Liu, Chih-Jen Lin","doi":"10.48550/arXiv.2306.07111","DOIUrl":null,"url":null,"abstract":"Large-scale pre-trained language models such as BERT are popular solutions for text classification.Due to the superior performance of these advanced methods, nowadays, people often directly train them for a few epochs and deploy the obtained model.In this opinion paper, we point out that this way may only sometimes get satisfactory results.We argue the importance of running a simple baseline like linear classifiers on bag-of-words features along with advanced methods.First, for many text data, linear methods show competitive performance, high efficiency, and robustness.Second, advanced models such as BERT may only achieve the best results if properly applied.Simple baselines help to confirm whether the results of advanced models are acceptable.Our experimental results fully support these points.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.07111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Large-scale pre-trained language models such as BERT are popular solutions for text classification.Due to the superior performance of these advanced methods, nowadays, people often directly train them for a few epochs and deploy the obtained model.In this opinion paper, we point out that this way may only sometimes get satisfactory results.We argue the importance of running a simple baseline like linear classifiers on bag-of-words features along with advanced methods.First, for many text data, linear methods show competitive performance, high efficiency, and robustness.Second, advanced models such as BERT may only achieve the best results if properly applied.Simple baselines help to confirm whether the results of advanced models are acceptable.Our experimental results fully support these points.
线性分类器:一个经常被遗忘的文本分类基线
像BERT这样的大规模预训练语言模型是文本分类的流行解决方案。由于这些先进方法的优越性能,目前人们往往直接对它们进行几个时代的训练并部署得到的模型。在这篇观点文章中,我们指出这种方法有时可能会得到令人满意的结果。我们讨论了在词袋特征上运行简单基线(如线性分类器)以及高级方法的重要性。首先,对于许多文本数据,线性方法表现出具有竞争力的性能、高效率和鲁棒性。其次,像BERT这样的高级模型只有在应用得当的情况下才能达到最好的结果。简单的基线有助于确认先进模型的结果是否可接受。我们的实验结果完全支持这些观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信