Zhuang National Costume Images Generation Method Based On Deep Convolutional Generative Adversarial Network

Zhenrong Deng, Bai Shanjin, Ma Fuxin, Wenming Huang, Xiaonan Luo
{"title":"Zhuang National Costume Images Generation Method Based On Deep Convolutional Generative Adversarial Network","authors":"Zhenrong Deng, Bai Shanjin, Ma Fuxin, Wenming Huang, Xiaonan Luo","doi":"10.1109/ICACI.2019.8778595","DOIUrl":null,"url":null,"abstract":"The style design and color matching of Zhuang national costumes is a time-consuming, labor-intensive but important task. For this problem, this paper proposes a method for generating images of Zhuang national costumes based on deep convolutional generative adversarial network. Firstly, combining the strong feature extraction capabilities of the convolutional neural network and generative adversarial network to learn the potential distribution of complex data, a deep convolutional generative adversarial network is designed and constructed. Secondly, for the problem that the generative adversarial network is difficult to converge, Introducing an activation function that is robust to noise and parameter initialization methods for noise, using a discriminator and generator training strategy with an iteration ratio of 1:3 helps the network converge to a steady state. The experimental results show that the method can converge to a stable state and effectively generate colorful Zhuang national costume images.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The style design and color matching of Zhuang national costumes is a time-consuming, labor-intensive but important task. For this problem, this paper proposes a method for generating images of Zhuang national costumes based on deep convolutional generative adversarial network. Firstly, combining the strong feature extraction capabilities of the convolutional neural network and generative adversarial network to learn the potential distribution of complex data, a deep convolutional generative adversarial network is designed and constructed. Secondly, for the problem that the generative adversarial network is difficult to converge, Introducing an activation function that is robust to noise and parameter initialization methods for noise, using a discriminator and generator training strategy with an iteration ratio of 1:3 helps the network converge to a steady state. The experimental results show that the method can converge to a stable state and effectively generate colorful Zhuang national costume images.
基于深度卷积生成对抗网络的壮族服饰图像生成方法
壮族民族服饰的款式设计和色彩搭配是一项费时费力的重要工作。针对这一问题,本文提出了一种基于深度卷积生成对抗网络的壮族服饰图像生成方法。首先,结合卷积神经网络和生成式对抗网络强大的特征提取能力,学习复杂数据的潜在分布,设计并构建深度卷积生成式对抗网络。其次,针对生成式对抗网络难以收敛的问题,引入对噪声具有鲁棒性的激活函数和对噪声的参数初始化方法,采用迭代比为1:3的鉴别器和生成器训练策略,使网络收敛到稳态。实验结果表明,该方法可以收敛到稳定状态,有效地生成丰富多彩的壮族服饰图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信