Subtyping dependent types

David Aspinall, Adriana B. Compagnoni
{"title":"Subtyping dependent types","authors":"David Aspinall, Adriana B. Compagnoni","doi":"10.1109/LICS.1996.561307","DOIUrl":null,"url":null,"abstract":"The need for subtyping in type-systems with dependent types has been realized for some years. But it is hard to prove that systems combining the two features have fundamental properties such as subject reduction. Here we investigate a subtyping extension of the system /spl lambda/P, which is an abstract version of the type system of the Edinburgh Logical Framework LF. By using an equivalent formulation, we establish some important properties of the new system /spl lambda/P/sub /spl les//, including subject reduction. Our analysis culminates in a complete and terminating algorithm which establishes the decidability of type-checking.","PeriodicalId":382663,"journal":{"name":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1996.561307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

Abstract

The need for subtyping in type-systems with dependent types has been realized for some years. But it is hard to prove that systems combining the two features have fundamental properties such as subject reduction. Here we investigate a subtyping extension of the system /spl lambda/P, which is an abstract version of the type system of the Edinburgh Logical Framework LF. By using an equivalent formulation, we establish some important properties of the new system /spl lambda/P/sub /spl les//, including subject reduction. Our analysis culminates in a complete and terminating algorithm which establishes the decidability of type-checking.
子类型依赖类型
在具有依赖类型的类型系统中实现子类型的需求已经有几年了。但很难证明结合这两个特征的系统具有主题约简等基本属性。本文研究了系统/spl λ /P的子类型扩展,它是爱丁堡逻辑框架LF类型系统的抽象版本。通过一个等价公式,我们建立了新系统/spl lambda/P/sub /spl les//的一些重要性质,包括主题约简。我们的分析最终得到了一个完整的终止算法,该算法建立了类型检查的可判定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信