Adaptive structured detector and performance assessment in training-limited cases

T. Jian, Xiaodong Huang, You He, Zhi Wang, Biao Ding, Jian Shen
{"title":"Adaptive structured detector and performance assessment in training-limited cases","authors":"T. Jian, Xiaodong Huang, You He, Zhi Wang, Biao Ding, Jian Shen","doi":"10.1109/RADAR.2016.8059469","DOIUrl":null,"url":null,"abstract":"Adaptive detection of a radar target is addressed in Gaussian clutter with persymmetric covariance matrix. Resorting to the persymmetry of covariance matrix, a structured detector of generalized likelihood ratio test is discussed. A more efficient version is further given in real domain. The performance assessment conducted by Monte Carlo simulation confirms its constant false alarm rate property and its advantage of detection performance in the case of insufficient number of training data.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptive detection of a radar target is addressed in Gaussian clutter with persymmetric covariance matrix. Resorting to the persymmetry of covariance matrix, a structured detector of generalized likelihood ratio test is discussed. A more efficient version is further given in real domain. The performance assessment conducted by Monte Carlo simulation confirms its constant false alarm rate property and its advantage of detection performance in the case of insufficient number of training data.
自适应结构化检测器与训练受限情况下的性能评估
利用超对称协方差矩阵,研究了高斯杂波下雷达目标的自适应检测问题。利用协方差矩阵的超对称性,讨论了广义似然比检验的结构化检测器。进一步给出了一种更有效的实域版本。通过蒙特卡罗仿真进行的性能评估,证实了其虚警率恒定的特性以及在训练数据量不足的情况下检测性能的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信