BERT BiLSTM-Attention Similarity Model

Ahmed Aboutaleb, Ahmed D. Fayed, Dina Ismail, Nada A. GabAllah, Ahmed Rafea, Nourhan Sakr
{"title":"BERT BiLSTM-Attention Similarity Model","authors":"Ahmed Aboutaleb, Ahmed D. Fayed, Dina Ismail, Nada A. GabAllah, Ahmed Rafea, Nourhan Sakr","doi":"10.1109/ICAICA52286.2021.9498209","DOIUrl":null,"url":null,"abstract":"Semantic similarity models are a core part of many of the applications of natural language processing (NLP) that we may be encountering daily, which makes them an important research topic. In particular, Question Answering Systems are one of the important applications that utilize semantic similarity models. This paper aims to propose a new architecture that improves the accuracy of calculating the similarity between questions. We are proposing the BERT BiLSTM-Attention Similarity Model. The model uses BERT as an embedding layer to convert the questions to their respective embeddings, and uses BiLSTM-Attention for feature extraction, giving more weight to important parts in the embeddings. The function of one over the exponential function of the Manhattan distance is used to calculate the semantic similarity score. The model achieves an accuracy of 84.45% in determining whether two questions from the Quora duplicate dataset are similar or not.","PeriodicalId":121979,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA52286.2021.9498209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Semantic similarity models are a core part of many of the applications of natural language processing (NLP) that we may be encountering daily, which makes them an important research topic. In particular, Question Answering Systems are one of the important applications that utilize semantic similarity models. This paper aims to propose a new architecture that improves the accuracy of calculating the similarity between questions. We are proposing the BERT BiLSTM-Attention Similarity Model. The model uses BERT as an embedding layer to convert the questions to their respective embeddings, and uses BiLSTM-Attention for feature extraction, giving more weight to important parts in the embeddings. The function of one over the exponential function of the Manhattan distance is used to calculate the semantic similarity score. The model achieves an accuracy of 84.45% in determining whether two questions from the Quora duplicate dataset are similar or not.
BERT bilstm -注意相似模型
语义相似模型是我们日常可能遇到的许多自然语言处理(NLP)应用的核心部分,这使其成为一个重要的研究课题。特别是,问答系统是利用语义相似模型的重要应用之一。本文旨在提出一种新的结构来提高问题间相似度的计算精度。我们提出BERT bilstm -注意相似性模型。该模型使用BERT作为嵌入层将问题转换为相应的嵌入,并使用BiLSTM-Attention进行特征提取,对嵌入中的重要部分给予更多的权重。用1除以曼哈顿距离的指数函数来计算语义相似度得分。该模型在确定Quora重复数据集中的两个问题是否相似方面达到了84.45%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信