State-Sharing Sparse Hidden Markov Models for Personalized Sequences

Hongzhi Shi, Chao Zhang, Quanming Yao, Yong Li, Funing Sun, Depeng Jin
{"title":"State-Sharing Sparse Hidden Markov Models for Personalized Sequences","authors":"Hongzhi Shi, Chao Zhang, Quanming Yao, Yong Li, Funing Sun, Depeng Jin","doi":"10.1145/3292500.3330828","DOIUrl":null,"url":null,"abstract":"Hidden Markov Model (HMM) is a powerful tool that has been widely adopted in sequence modeling tasks, such as mobility analysis, healthcare informatics, and online recommendation. However, using HMM for modeling personalized sequences remains a challenging problem: training a unified HMM with all the sequences often fails to uncover interesting personalized patterns; yet training one HMM for each individual inevitably suffers from data scarcity. We address this challenge by proposing a state-sharing sparse hidden Markov model (S3HMM) that can uncover personalized sequential patterns without suffering from data scarcity. This is achieved by two design principles: (1) all the HMMs in the ensemble share the same set of latent states; and (2) each HMM has its own transition matrix to model the personalized transitions. The result optimization problem for S3HMM becomes nontrivial, because of its two-layer hidden state design and the non-convexity in parameter estimation. We design a new Expectation-Maximization algorithm based, which treats the difference of convex programming as a sub-solver to optimize the non-convex function in the M-step with convergence guarantee. Our experimental results show that, S3HMM can successfully uncover personalized sequential patterns in various applications and outperforms baselines significantly in downstream prediction tasks.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Hidden Markov Model (HMM) is a powerful tool that has been widely adopted in sequence modeling tasks, such as mobility analysis, healthcare informatics, and online recommendation. However, using HMM for modeling personalized sequences remains a challenging problem: training a unified HMM with all the sequences often fails to uncover interesting personalized patterns; yet training one HMM for each individual inevitably suffers from data scarcity. We address this challenge by proposing a state-sharing sparse hidden Markov model (S3HMM) that can uncover personalized sequential patterns without suffering from data scarcity. This is achieved by two design principles: (1) all the HMMs in the ensemble share the same set of latent states; and (2) each HMM has its own transition matrix to model the personalized transitions. The result optimization problem for S3HMM becomes nontrivial, because of its two-layer hidden state design and the non-convexity in parameter estimation. We design a new Expectation-Maximization algorithm based, which treats the difference of convex programming as a sub-solver to optimize the non-convex function in the M-step with convergence guarantee. Our experimental results show that, S3HMM can successfully uncover personalized sequential patterns in various applications and outperforms baselines significantly in downstream prediction tasks.
个性化序列的状态共享稀疏隐马尔可夫模型
隐马尔可夫模型(HMM)是一种强大的工具,已广泛应用于序列建模任务,如流动性分析、医疗保健信息学和在线推荐。然而,使用HMM对个性化序列建模仍然是一个具有挑战性的问题:用所有序列训练统一的HMM往往无法发现有趣的个性化模式;然而,为每个个体训练一个HMM不可避免地会受到数据稀缺的困扰。我们通过提出一种状态共享稀疏隐马尔可夫模型(S3HMM)来解决这一挑战,该模型可以在不遭受数据稀缺的情况下发现个性化的序列模式。这是通过两个设计原则来实现的:(1)集合中的所有hmm共享相同的潜在状态集;(2)每个HMM都有自己的过渡矩阵来建模个性化的过渡。由于其两层隐藏状态设计和参数估计的非凸性,使得S3HMM的结果优化问题变得不平凡。设计了一种新的基于期望最大化的算法,该算法将凸规划的差分作为子求解器来优化m步的非凸函数,并保证其收敛性。我们的实验结果表明,S3HMM可以成功地在各种应用中发现个性化的序列模式,并且在下游预测任务中显着优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信