Residue-Weighted Number Conversion with Moduli Set {2^p-1, 2^p+1, 2^{2p}+1, 2^p} Using Signed-Digit Number Arithmetic

Changjun Jiang, Shugang Wei
{"title":"Residue-Weighted Number Conversion with Moduli Set {2^p-1, 2^p+1, 2^{2p}+1, 2^p} Using Signed-Digit Number Arithmetic","authors":"Changjun Jiang, Shugang Wei","doi":"10.1109/DCABES.2010.132","DOIUrl":null,"url":null,"abstract":"By introducing a signed-digit (SD) number arithmetic into a residue number system (RNS), arithmetic operations can be performed efficiently. In this study, an algorithm for residue-to-binary with four moduli set {2^p− 1, 2^p +1, 2^{2p}+1, 2^p} using the SD number high-speed residue addition is proposed. Based on the proposed algorithm, the converters are designed with 2-level binary tree structure of SD number residue additions. The comparison of the new converter using SD number arithmetic and the converter using binary arithmetic yields reductions in delays of 22% and 40% for p=4 and p=8, respectively.","PeriodicalId":415246,"journal":{"name":"2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES.2010.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

By introducing a signed-digit (SD) number arithmetic into a residue number system (RNS), arithmetic operations can be performed efficiently. In this study, an algorithm for residue-to-binary with four moduli set {2^p− 1, 2^p +1, 2^{2p}+1, 2^p} using the SD number high-speed residue addition is proposed. Based on the proposed algorithm, the converters are designed with 2-level binary tree structure of SD number residue additions. The comparison of the new converter using SD number arithmetic and the converter using binary arithmetic yields reductions in delays of 22% and 40% for p=4 and p=8, respectively.
基于符号数字算法的模集{2^p- 1,2 ^p+ 1,2 ^{2p}+ 1,2 ^p}残差加权数转换
通过在残数系统中引入符号数算法,可以有效地进行算术运算。本文提出了一种基于SD数高速残数加法的四模集{2^p−1,2 ^p + 1,2 ^{2p}+ 1,2 ^p}残数到二值化算法。在此基础上,设计了SD数残数相加的2级二叉树结构。在p=4和p=8时,使用SD数算法的新转换器和使用二进制算法的转换器的比较分别减少了22%和40%的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信