Pseudo Transfer with Marginalized Corrupted Attribute for Zero-shot Learning

Teng Long, Xing Xu, Youyou Li, Fumin Shen, Jingkuan Song, Heng Tao Shen
{"title":"Pseudo Transfer with Marginalized Corrupted Attribute for Zero-shot Learning","authors":"Teng Long, Xing Xu, Youyou Li, Fumin Shen, Jingkuan Song, Heng Tao Shen","doi":"10.1145/3240508.3240715","DOIUrl":null,"url":null,"abstract":"Zero-shot learning (ZSL) aims to recognize unseen classes that are excluded from training classes. ZSL suffers from 1) Zero-shot bias (Z-Bias) --- model is biased towards seen classes because unseen data is inaccessible for training; 2) Zero-shot variance (Z-Variance) --- associating different images to same semantic embedding yields large associating error. To reduce Z-Bias, we propose a pseudo transfer mechanism, where we first synthesize the distribution of unseen data using semantic embeddings, then we minimize the mismatch between the seen distribution and the synthesized unseen distribution. To reduce Z-Variance, we implicitly corrupted one semantic embedding multiple times to generate image-wise semantic vectors, with which our model learn robust classifiers. Lastly, we integrate our Z-Bias and Z-variance reduction techniques with a linear ZSL model to show its usefulness. Our proposed model successfully overcomes the Z-bias and Z-variance problems. Extensive experiments on five benchmark datasets including ImageNet-1K demonstrate that our model outperforms the state-of-the-art methods with fast training.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Zero-shot learning (ZSL) aims to recognize unseen classes that are excluded from training classes. ZSL suffers from 1) Zero-shot bias (Z-Bias) --- model is biased towards seen classes because unseen data is inaccessible for training; 2) Zero-shot variance (Z-Variance) --- associating different images to same semantic embedding yields large associating error. To reduce Z-Bias, we propose a pseudo transfer mechanism, where we first synthesize the distribution of unseen data using semantic embeddings, then we minimize the mismatch between the seen distribution and the synthesized unseen distribution. To reduce Z-Variance, we implicitly corrupted one semantic embedding multiple times to generate image-wise semantic vectors, with which our model learn robust classifiers. Lastly, we integrate our Z-Bias and Z-variance reduction techniques with a linear ZSL model to show its usefulness. Our proposed model successfully overcomes the Z-bias and Z-variance problems. Extensive experiments on five benchmark datasets including ImageNet-1K demonstrate that our model outperforms the state-of-the-art methods with fast training.
带有边缘损坏属性的伪迁移零射击学习
零射击学习(Zero-shot learning, ZSL)旨在识别那些被排除在培训课程之外的看不见的课程。ZSL存在1)零射击偏差(Z-Bias)——模型偏向于看到的类别,因为看不到的数据无法用于训练;2)零射击方差(Z-Variance)——将不同的图像关联到相同的语义嵌入会产生很大的关联误差。为了减少z偏差,我们提出了一种伪传递机制,首先使用语义嵌入合成未见数据的分布,然后最小化已见分布与合成未见分布之间的不匹配。为了减少Z-Variance,我们隐式地多次破坏一个语义嵌入来生成图像语义向量,我们的模型用它来学习鲁棒分类器。最后,我们将z偏差和z方差减少技术与线性ZSL模型相结合,以显示其实用性。我们提出的模型成功地克服了z偏差和z方差问题。在包括ImageNet-1K在内的五个基准数据集上进行的大量实验表明,我们的模型通过快速训练优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信