Teng Long, Xing Xu, Youyou Li, Fumin Shen, Jingkuan Song, Heng Tao Shen
{"title":"Pseudo Transfer with Marginalized Corrupted Attribute for Zero-shot Learning","authors":"Teng Long, Xing Xu, Youyou Li, Fumin Shen, Jingkuan Song, Heng Tao Shen","doi":"10.1145/3240508.3240715","DOIUrl":null,"url":null,"abstract":"Zero-shot learning (ZSL) aims to recognize unseen classes that are excluded from training classes. ZSL suffers from 1) Zero-shot bias (Z-Bias) --- model is biased towards seen classes because unseen data is inaccessible for training; 2) Zero-shot variance (Z-Variance) --- associating different images to same semantic embedding yields large associating error. To reduce Z-Bias, we propose a pseudo transfer mechanism, where we first synthesize the distribution of unseen data using semantic embeddings, then we minimize the mismatch between the seen distribution and the synthesized unseen distribution. To reduce Z-Variance, we implicitly corrupted one semantic embedding multiple times to generate image-wise semantic vectors, with which our model learn robust classifiers. Lastly, we integrate our Z-Bias and Z-variance reduction techniques with a linear ZSL model to show its usefulness. Our proposed model successfully overcomes the Z-bias and Z-variance problems. Extensive experiments on five benchmark datasets including ImageNet-1K demonstrate that our model outperforms the state-of-the-art methods with fast training.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Zero-shot learning (ZSL) aims to recognize unseen classes that are excluded from training classes. ZSL suffers from 1) Zero-shot bias (Z-Bias) --- model is biased towards seen classes because unseen data is inaccessible for training; 2) Zero-shot variance (Z-Variance) --- associating different images to same semantic embedding yields large associating error. To reduce Z-Bias, we propose a pseudo transfer mechanism, where we first synthesize the distribution of unseen data using semantic embeddings, then we minimize the mismatch between the seen distribution and the synthesized unseen distribution. To reduce Z-Variance, we implicitly corrupted one semantic embedding multiple times to generate image-wise semantic vectors, with which our model learn robust classifiers. Lastly, we integrate our Z-Bias and Z-variance reduction techniques with a linear ZSL model to show its usefulness. Our proposed model successfully overcomes the Z-bias and Z-variance problems. Extensive experiments on five benchmark datasets including ImageNet-1K demonstrate that our model outperforms the state-of-the-art methods with fast training.