Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models

S. J. Koopman, A. Lucas, Marcel Scharth
{"title":"Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models","authors":"S. J. Koopman, A. Lucas, Marcel Scharth","doi":"10.2139/ssrn.1790472","DOIUrl":null,"url":null,"abstract":"We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that only a small part of the likelihood evaluation problem requires simulation. We refer to our new method as numerically accelerated importance sampling. The method is computationally and numerically efficient, facilitates parameter estimation for models with high-dimensional state vectors, and overcomes a bias-variance trade-off encountered by other sampling methods. An elaborate simulation study and an empirical application for U.S. stock returns reveal large efficiency gains for a range of models used in financial econometrics.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1790472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that only a small part of the likelihood evaluation problem requires simulation. We refer to our new method as numerically accelerated importance sampling. The method is computationally and numerically efficient, facilitates parameter estimation for models with high-dimensional state vectors, and overcomes a bias-variance trade-off encountered by other sampling methods. An elaborate simulation study and an empirical application for U.S. stock returns reveal large efficiency gains for a range of models used in financial econometrics.
非线性非高斯状态空间模型的数值加速重要性采样
针对非线性非高斯状态空间模型,提出了一种高效的重要采样器。将数值方法与蒙特卡罗积分方法相结合,提出了一种通用的、高效的模型似然评估方法。我们的方法探讨的想法,只有一小部分的可能性评估问题需要模拟。我们把我们的新方法称为数值加速重要性抽样。该方法具有计算和数值效率高,便于高维状态向量模型的参数估计,并且克服了其他采样方法所遇到的偏方差权衡问题。一项详细的模拟研究和对美国股票回报的实证应用表明,金融计量经济学中使用的一系列模型具有很大的效率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信