Structural fuzzy classification system, evolves and its engineering application

M. Ahmed, Nor Ashidi Mat Isa
{"title":"Structural fuzzy classification system, evolves and its engineering application","authors":"M. Ahmed, Nor Ashidi Mat Isa","doi":"10.1109/TENCONSPRING.2014.6863075","DOIUrl":null,"url":null,"abstract":"The proposed structural fuzzy classification system (SFCS) is an online self-organizing method and automatically identifies the prominent distinct data in the output domain for the new fuzzy rule. Thus, SFCS always tends from higher to lower error region. Both evolving error and rule creation are dynamically realized from the past and current knowledge. Therefore, effective rule-base is the balanced fuzzy model of the approximated system. This effective rule-base might be applied to engineering application to depict the prominent distinction on the output space.","PeriodicalId":270495,"journal":{"name":"2014 IEEE REGION 10 SYMPOSIUM","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE REGION 10 SYMPOSIUM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2014.6863075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proposed structural fuzzy classification system (SFCS) is an online self-organizing method and automatically identifies the prominent distinct data in the output domain for the new fuzzy rule. Thus, SFCS always tends from higher to lower error region. Both evolving error and rule creation are dynamically realized from the past and current knowledge. Therefore, effective rule-base is the balanced fuzzy model of the approximated system. This effective rule-base might be applied to engineering application to depict the prominent distinction on the output space.
结构模糊分类系统、演变及其工程应用
本文提出的结构模糊分类系统(SFCS)是一种在线自组织的方法,能够自动识别出输出域中显著的不同数据。因此,SFCS总是从较高的误差区域向较低的误差区域倾斜。根据过去和当前的知识动态地实现了不断变化的误差和规则的创建。因此,有效的规则库是近似系统的平衡模糊模型。这种有效的规则库可以应用于工程应用,以描述输出空间上的显著区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信