Analysis of stagnation behavior of vector evaluated particle swarm optimization

Wiehann Matthysen, A. Engelbrecht, K. Malan
{"title":"Analysis of stagnation behavior of vector evaluated particle swarm optimization","authors":"Wiehann Matthysen, A. Engelbrecht, K. Malan","doi":"10.1109/SIS.2013.6615173","DOIUrl":null,"url":null,"abstract":"The vector evaluated particle swarm optimization (VEPSO) algorithm is a cooperative, multi-swarm algorithm. Each sub-swarm optimizes only a single objective of a multi-objective problem (MOP), and implements a knowledge transfer strategy (KTS) to share optimal positions of the different objectives among the sub-swarms, guiding the particles to different regions of the Pareto front. This paper shows that the stagnation problem that occurs in VEPSO can be addressed by using a different KTS. A comparison is made between the ring-based and random knowledge transfer strategies. Experimental results show that the random knowledge transfer strategy suffers less from stagnation than the ring-based KTS, making it the preferred KTS to use.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The vector evaluated particle swarm optimization (VEPSO) algorithm is a cooperative, multi-swarm algorithm. Each sub-swarm optimizes only a single objective of a multi-objective problem (MOP), and implements a knowledge transfer strategy (KTS) to share optimal positions of the different objectives among the sub-swarms, guiding the particles to different regions of the Pareto front. This paper shows that the stagnation problem that occurs in VEPSO can be addressed by using a different KTS. A comparison is made between the ring-based and random knowledge transfer strategies. Experimental results show that the random knowledge transfer strategy suffers less from stagnation than the ring-based KTS, making it the preferred KTS to use.
基于粒子群优化的矢量滞止行为分析
向量评估粒子群优化算法(VEPSO)是一种协作的多群算法。每个子群只对多目标问题(MOP)中的单个目标进行优化,并通过知识转移策略(KTS)在子群之间共享不同目标的最优位置,引导粒子到达帕雷托前沿的不同区域。本文表明,VEPSO中出现的停滞问题可以通过使用不同的KTS来解决。对基于环的知识转移策略和随机知识转移策略进行了比较。实验结果表明,与基于环的KTS相比,随机知识转移策略受停滞的影响较小,是首选的KTS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信