A robust CNN classification of whole slide thyroid carcinoma images

Ahmed S. El-Hossiny, Valid Al-Atabany, Osama N. Hassan, A. Mostafa, Sherif A. Sami
{"title":"A robust CNN classification of whole slide thyroid carcinoma images","authors":"Ahmed S. El-Hossiny, Valid Al-Atabany, Osama N. Hassan, A. Mostafa, Sherif A. Sami","doi":"10.1109/JAC-ECC54461.2021.9691433","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to build a classification system for \"Whole Slide Images\" (WSIs) based on a Convolutional Neural Network (CNN). Six types of thyroid tumors can be classified by the system: \"follicular adenoma\" (FA), \"papillary carcinoma\" (PC), \"follicular carcinoma\" (FC), \"papillary follicular variant\" (PFV), \"poorly-differentiated follicular carcinoma\" (PDFC), and \"well-differentiated follicular carcinoma\" (WDFC). The proposed custom CNN is compared with the well-known pre-trained Alexnet CNN. The results show the robustness of the proposed CNN, achieving an overall accuracy of 97.07% compared to only 93.81% for the Alexnet.","PeriodicalId":354908,"journal":{"name":"2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC)","volume":"17 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JAC-ECC54461.2021.9691433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this paper is to build a classification system for "Whole Slide Images" (WSIs) based on a Convolutional Neural Network (CNN). Six types of thyroid tumors can be classified by the system: "follicular adenoma" (FA), "papillary carcinoma" (PC), "follicular carcinoma" (FC), "papillary follicular variant" (PFV), "poorly-differentiated follicular carcinoma" (PDFC), and "well-differentiated follicular carcinoma" (WDFC). The proposed custom CNN is compared with the well-known pre-trained Alexnet CNN. The results show the robustness of the proposed CNN, achieving an overall accuracy of 97.07% compared to only 93.81% for the Alexnet.
一种稳健的全片甲状腺癌图像CNN分类方法
本文的目的是建立一个基于卷积神经网络(CNN)的“全幻灯片图像”(WSIs)分类系统。该系统可将甲状腺肿瘤分为六种类型:“滤泡腺瘤”(FA)、“乳头状癌”(PC)、“滤泡癌”(FC)、“乳头状滤泡变异”(PFV)、“低分化滤泡癌”(PDFC)和“高分化滤泡癌”(WDFC)。将提出的自定义CNN与众所周知的预训练Alexnet CNN进行比较。结果表明,本文提出的CNN具有很强的鲁棒性,总体准确率达到97.07%,而Alexnet的准确率仅为93.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信