Estimation of bending behavior of an ionic polymer metal composite actuator using a nonlinear black-box model

D. Truong, K. Ahn, D. N. C. Nam, J. Yoon
{"title":"Estimation of bending behavior of an ionic polymer metal composite actuator using a nonlinear black-box model","authors":"D. Truong, K. Ahn, D. N. C. Nam, J. Yoon","doi":"10.1109/ICCAS.2010.5669876","DOIUrl":null,"url":null,"abstract":"An ion polymer metal composite (IPMC) is an electro-active polymer that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. This paper presents a novel accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC. The NBBM is based on a recurrent multi-layer perceptron neural network (RMLPNN) and a self-adjustable learning mechanism (SALM). The model parameters are optimized by using training data. A comparison of the estimated and real IPMC bending characteristic has been done to investigate the modeling ability of the designed NBBM.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5669876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An ion polymer metal composite (IPMC) is an electro-active polymer that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. This paper presents a novel accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC. The NBBM is based on a recurrent multi-layer perceptron neural network (RMLPNN) and a self-adjustable learning mechanism (SALM). The model parameters are optimized by using training data. A comparison of the estimated and real IPMC bending characteristic has been done to investigate the modeling ability of the designed NBBM.
用非线性黑盒模型估计离子聚合物金属复合作动器的弯曲行为
离子聚合物金属复合材料(IPMC)是一种电活性聚合物,由于聚合物网络中阳离子的迁移而在小的外加电场下弯曲,反之亦然。本文提出了一种新的高精度非线性黑盒模型(NBBM),用于估算IPMC的弯曲性能。NBBM基于递归多层感知器神经网络(RMLPNN)和自调节学习机制(SALM)。利用训练数据对模型参数进行优化。通过对预估的和实际的IPMC弯曲特性的比较,研究了所设计的NBBM的建模能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信