Performance evaluation of self-similar traffic in multimedia wireless communication networks with power saving class type III in IEEE 802.16e

Shunfu Jin, Wuyi Yue
{"title":"Performance evaluation of self-similar traffic in multimedia wireless communication networks with power saving class type III in IEEE 802.16e","authors":"Shunfu Jin, Wuyi Yue","doi":"10.1109/WCINS.2010.5544125","DOIUrl":null,"url":null,"abstract":"In this paper, we present a theoretical analysis to numerically evaluate the system performance of multimedia wireless communication networks with power saving class type III in IEEE 802.16e for self-similar traffic. Our model is based on system operations using a batch arrival, and we suppose the batch size to be a random variable following a Pareto(c, α) distribution in order to capture the self-similar property. By using a discrete-time embedded Markov chain, we derive the probability generating functions of the number of data frames and batches for when the busy period begins and for when the system is in a busy cycle. Using the first and higher moments of the probability generating functions, we give the averages and the standard deviation for the system performance in the diffusion approximation for the operation process of the system. In numerical results, we show the performance measures such as the energy saving ratio, plus the average and the standard deviation for the handover ratio with different system parameters as examples.","PeriodicalId":156036,"journal":{"name":"2010 IEEE International Conference on Wireless Communications, Networking and Information Security","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Wireless Communications, Networking and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCINS.2010.5544125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present a theoretical analysis to numerically evaluate the system performance of multimedia wireless communication networks with power saving class type III in IEEE 802.16e for self-similar traffic. Our model is based on system operations using a batch arrival, and we suppose the batch size to be a random variable following a Pareto(c, α) distribution in order to capture the self-similar property. By using a discrete-time embedded Markov chain, we derive the probability generating functions of the number of data frames and batches for when the busy period begins and for when the system is in a busy cycle. Using the first and higher moments of the probability generating functions, we give the averages and the standard deviation for the system performance in the diffusion approximation for the operation process of the system. In numerical results, we show the performance measures such as the energy saving ratio, plus the average and the standard deviation for the handover ratio with different system parameters as examples.
IEEE 802.16e标准下III类省电多媒体无线通信网络中自相似流量的性能评估
在本文中,我们提出了一个理论分析,以数值评估自相似流量下IEEE 802.16e中省电类III的多媒体无线通信网络的系统性能。我们的模型基于使用批到达的系统操作,并且我们假设批大小是遵循Pareto(c, α)分布的随机变量,以便捕获自相似属性。利用离散时间内嵌马尔可夫链,导出了繁忙周期开始时和系统处于繁忙周期时数据帧数和批次数的概率生成函数。利用概率生成函数的一阶矩和高阶矩,给出了系统运行过程的扩散近似中系统性能的平均值和标准差。在数值结果中,我们给出了在不同系统参数下的节能率、切换率的平均值和标准差等性能指标作为例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信