Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images

Jia-Chun Sheng, Yiping Liao, Chun-Rong Huang
{"title":"Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images","authors":"Jia-Chun Sheng, Yiping Liao, Chun-Rong Huang","doi":"10.1109/IS3C57901.2023.00098","DOIUrl":null,"url":null,"abstract":"Instance segmentation can be applied for the discrimination and diagnosis of cancer cells in pathology images. Accurate segmentation of each pathological cell in the pathology images can improve the efficiency of clinical diagnosis. In this paper, we aim to evaluate the state-of-the-art transformer-based instance segmentation method, masked-attention mask transformer (Mask2Former)[1], on pathology datasets. With the pretrained model of Mask2Former on the natural image instance segmentation dataset, we show that Mask2Former can be adaptive to small pathological datasets and achieve comparable or even better instance segmentation performance compared with the state-of-the-art task-specific pathology image instance segmentation methods.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C57901.2023.00098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Instance segmentation can be applied for the discrimination and diagnosis of cancer cells in pathology images. Accurate segmentation of each pathological cell in the pathology images can improve the efficiency of clinical diagnosis. In this paper, we aim to evaluate the state-of-the-art transformer-based instance segmentation method, masked-attention mask transformer (Mask2Former)[1], on pathology datasets. With the pretrained model of Mask2Former on the natural image instance segmentation dataset, we show that Mask2Former can be adaptive to small pathological datasets and achieve comparable or even better instance segmentation performance compared with the state-of-the-art task-specific pathology image instance segmentation methods.
将掩码-注意力掩码变换应用于病理图像的实例分割
实例分割可用于病理图像中癌细胞的识别和诊断。对病理图像中每个病理细胞进行准确的分割,可以提高临床诊断的效率。在本文中,我们的目标是在病理数据集上评估最先进的基于变压器的实例分割方法,掩码-注意力掩码变压器(Mask2Former)[1]。通过在自然图像实例分割数据集上预训练的Mask2Former模型,我们证明了Mask2Former可以自适应小型病理数据集,并且与最先进的特定任务病理图像实例分割方法相比,可以获得相当甚至更好的实例分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信