Hugh Boys, G. Frediani, Michele Ghilardi, S. Poslad, James J. C. Busfield, F. Carpi
{"title":"Soft wearable non-vibratory tactile displays","authors":"Hugh Boys, G. Frediani, Michele Ghilardi, S. Poslad, James J. C. Busfield, F. Carpi","doi":"10.1109/ROBOSOFT.2018.8404931","DOIUrl":null,"url":null,"abstract":"This paper presents a new type of wearable finger-tip tactile displays aimed at providing electrically tuneable tactile stimuli interactions with soft bodies. This is achieved by a new actuation technology based on soft electroactive polymers, capable of generating large and quasi-static displacements at moderate forces. This is intentionally different from the high-frequency small vibrations at high forces that are used in several state-of-the-art tactile displays. We describe the ongoing development of devices having a volume of 20×12×23 mm and weigh of only 6 g on finger, which can render electrically tuneable displacements of up to 3.5 mm and forces of up to 0.8 N.","PeriodicalId":306255,"journal":{"name":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOSOFT.2018.8404931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper presents a new type of wearable finger-tip tactile displays aimed at providing electrically tuneable tactile stimuli interactions with soft bodies. This is achieved by a new actuation technology based on soft electroactive polymers, capable of generating large and quasi-static displacements at moderate forces. This is intentionally different from the high-frequency small vibrations at high forces that are used in several state-of-the-art tactile displays. We describe the ongoing development of devices having a volume of 20×12×23 mm and weigh of only 6 g on finger, which can render electrically tuneable displacements of up to 3.5 mm and forces of up to 0.8 N.