PDF optimized parametric vector quantization of speech line spectral frequencies

A. D. Subramaniam, B. Rao
{"title":"PDF optimized parametric vector quantization of speech line spectral frequencies","authors":"A. D. Subramaniam, B. Rao","doi":"10.1109/SCFT.2000.878407","DOIUrl":null,"url":null,"abstract":"A computationally efficient, high quality, vector quantization scheme based on a parametric probability density function (PDF) is developed for encoding speech line spectral frequencies (LSF). For this purpose, speech LSFs are modeled as i.i.d realizations of a multivariate normal mixture density. The mixture model parameters are efficiently estimated from the training data using the expectation maximization (EM) algorithm. The estimated density is suitably quantized using transform coding and bit-allocation techniques for both fixed rate and variable rate systems. Source encoding using the resultant codebook involves no searches and its computational complexity is minimal and independent of the rate of the system. Experimental results show that the proposed scheme provides 2-3 bits gain over conventional MSVQ schemes. The proposed memoryless quantizer is enhanced to form a quantizer with memory. The quantizer with memory provides transparent quality speech at 20 bits/frame.","PeriodicalId":359453,"journal":{"name":"2000 IEEE Workshop on Speech Coding. Proceedings. Meeting the Challenges of the New Millennium (Cat. No.00EX421)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE Workshop on Speech Coding. Proceedings. Meeting the Challenges of the New Millennium (Cat. No.00EX421)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCFT.2000.878407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

Abstract

A computationally efficient, high quality, vector quantization scheme based on a parametric probability density function (PDF) is developed for encoding speech line spectral frequencies (LSF). For this purpose, speech LSFs are modeled as i.i.d realizations of a multivariate normal mixture density. The mixture model parameters are efficiently estimated from the training data using the expectation maximization (EM) algorithm. The estimated density is suitably quantized using transform coding and bit-allocation techniques for both fixed rate and variable rate systems. Source encoding using the resultant codebook involves no searches and its computational complexity is minimal and independent of the rate of the system. Experimental results show that the proposed scheme provides 2-3 bits gain over conventional MSVQ schemes. The proposed memoryless quantizer is enhanced to form a quantizer with memory. The quantizer with memory provides transparent quality speech at 20 bits/frame.
PDF优化的语音线谱频率参数矢量量化
提出了一种基于参数概率密度函数(PDF)的计算效率高、质量好的矢量量化方案,用于语音线谱频率(LSF)编码。为此,语音lsf被建模为多元正态混合密度的i.d实现。利用期望最大化算法从训练数据中有效地估计混合模型参数。对于固定速率和可变速率系统,使用变换编码和比特分配技术对估计密度进行了适当的量化。使用所得到的码本进行源编码不需要搜索,其计算复杂度最小且与系统的速率无关。实验结果表明,该方案比传统的MSVQ方案具有2 ~ 3比特的增益。所提出的无记忆量化器被增强为具有记忆的量化器。带有内存的量化器提供透明的高质量语音,速率为20比特/帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信