Compound Analytics using Combinatorics for Feature Selection: A Case Study in Biomarker Detection

Ronald D. Hagan, Brett D. Hagan, C. Phillips, B. Rhodes, M. Langston
{"title":"Compound Analytics using Combinatorics for Feature Selection: A Case Study in Biomarker Detection","authors":"Ronald D. Hagan, Brett D. Hagan, C. Phillips, B. Rhodes, M. Langston","doi":"10.1109/IPDPSW.2019.00050","DOIUrl":null,"url":null,"abstract":"Computer and data scientists are increasingly tasked with analyzing data growing at unprecedented rates. These data frequently involve a high level of dimensionality. In this work, we present a novel method for dimension reduction that combines statistical scoring with graph theoretical filtering to distill salient features for machine learning. We apply this method to the timely problem of detecting epigenetic biomarkers in DNA methylation data.","PeriodicalId":292054,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2019.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computer and data scientists are increasingly tasked with analyzing data growing at unprecedented rates. These data frequently involve a high level of dimensionality. In this work, we present a novel method for dimension reduction that combines statistical scoring with graph theoretical filtering to distill salient features for machine learning. We apply this method to the timely problem of detecting epigenetic biomarkers in DNA methylation data.
使用组合学进行特征选择的复合分析:生物标志物检测的案例研究
计算机和数据科学家越来越多地承担着分析以前所未有的速度增长的数据的任务。这些数据通常涉及高维度。在这项工作中,我们提出了一种新的降维方法,该方法将统计评分与图理论过滤相结合,以提取用于机器学习的显著特征。我们将该方法应用于DNA甲基化数据中表观遗传生物标志物的及时检测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信