Design and control of an upper arm exoskeleton using Fuzzy logic techniques

M. Tageldeen, N. Perumal, I. Elamvazuthi, T. Ganesan
{"title":"Design and control of an upper arm exoskeleton using Fuzzy logic techniques","authors":"M. Tageldeen, N. Perumal, I. Elamvazuthi, T. Ganesan","doi":"10.1109/ROMA.2016.7847838","DOIUrl":null,"url":null,"abstract":"Traditional rehabilitation suffers from aplenty downfalls; they are costly and time consuming. Robotic rehabilitation has the potential to be a better substitute. Recent evidence suggests that there is a pressing need to employ the patient muscle effort to control the assistive robot, otherwise the patient may fully depend on the robot, and this leads to slackness and deteriorated muscle functionalities. The development of a non-invasive human-machine interface is challenging, since surface electromyography (sEMG) electrodes are uncertain and noise; hence a model that considers the uncertainty and noise involved seems important. This study aims to contribute to this growing area of research by exploring and comparing the performance of different Fuzzy logic techniques on the estimation of joint torques from relevant muscles electromyography measurements for the accurate control of rehabilitation exoskeletons.","PeriodicalId":409977,"journal":{"name":"2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMA.2016.7847838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Traditional rehabilitation suffers from aplenty downfalls; they are costly and time consuming. Robotic rehabilitation has the potential to be a better substitute. Recent evidence suggests that there is a pressing need to employ the patient muscle effort to control the assistive robot, otherwise the patient may fully depend on the robot, and this leads to slackness and deteriorated muscle functionalities. The development of a non-invasive human-machine interface is challenging, since surface electromyography (sEMG) electrodes are uncertain and noise; hence a model that considers the uncertainty and noise involved seems important. This study aims to contribute to this growing area of research by exploring and comparing the performance of different Fuzzy logic techniques on the estimation of joint torques from relevant muscles electromyography measurements for the accurate control of rehabilitation exoskeletons.
基于模糊逻辑技术的上臂外骨骼设计与控制
传统的康复遭受了很多挫折;它们既昂贵又耗时。机器人康复有可能成为更好的替代品。最近的证据表明,迫切需要利用患者的肌肉力量来控制辅助机器人,否则患者可能完全依赖机器人,这将导致松弛和肌肉功能恶化。非侵入式人机界面的开发具有挑战性,因为表面肌电图(sEMG)电极是不确定的和噪声的;因此,考虑到不确定性和噪声的模型似乎很重要。本研究旨在通过探索和比较不同模糊逻辑技术在从相关肌肉肌电测量中估计关节扭矩方面的性能,从而为康复外骨骼的精确控制做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信