Subspace subcodes of Reed-Solomon codes

M. Hattori, R. McEliece, G. Solomon
{"title":"Subspace subcodes of Reed-Solomon codes","authors":"M. Hattori, R. McEliece, G. Solomon","doi":"10.1109/ISIT.1994.395045","DOIUrl":null,"url":null,"abstract":"A subspace subcode of a Reed-Solomon (SSRS) code over GF(2/sup m/) is the set of RS code-words, whose components all lie in a particular GF(2)-subspace of GF(2/sup m/). SSRS codes include both generalized BCH codes and \"trace-shortened\" RS codes as special cases. In this paper we present an explicit formula for the dimension of an arbitrary RS subspace subcode. Using this formula, we find that in many cases, SSRS codes are competitive with algebraic geometry codes, and that in some cases, the dimension of the best subspace subcode is larger than that of the corresponding GBCH code.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.395045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

A subspace subcode of a Reed-Solomon (SSRS) code over GF(2/sup m/) is the set of RS code-words, whose components all lie in a particular GF(2)-subspace of GF(2/sup m/). SSRS codes include both generalized BCH codes and "trace-shortened" RS codes as special cases. In this paper we present an explicit formula for the dimension of an arbitrary RS subspace subcode. Using this formula, we find that in many cases, SSRS codes are competitive with algebraic geometry codes, and that in some cases, the dimension of the best subspace subcode is larger than that of the corresponding GBCH code.<>
Reed-Solomon码的子空间子码
GF(2/sup m/)上的SSRS码的子空间子码是RS码字的集合,其分量都在GF(2/sup m/)的特定GF(2)-子空间中。SSRS代码包括广义BCH代码和作为特殊情况的“跟踪缩短”RS代码。本文给出了任意RS子空间子码维数的一个显式公式。利用该公式,我们发现在许多情况下,SSRS码与代数几何码是竞争的,并且在某些情况下,最佳子空间子码的维数大于相应的GBCH码的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信