{"title":"High-dimensional Feature Selection in Classification: A Length-Adaptive Evolutionary Approach","authors":"Junhai Zhou, Jian-chun Lu, Quanwang Wu, Junhao Wen","doi":"10.1109/ICNSC55942.2022.10004048","DOIUrl":null,"url":null,"abstract":"Feature selection is an essential technique which has been widely applied in data mining. Recent research has shown that a good feature subset can be obtained by using evolutionary computing (EC) approaches as a wrapper. However, most feature selection methods based on EC use a fixed-length encoding to represent feature subsets. When this fixed length representation is applied to high-dimensional data, it requires a large amount of memory space as well as a high computational cost. Moreover, this representation is inflexible and may limit the performance of EC because of a too huge search space. In this paper, we propose an Adaptive- Variable-Length Genetic Algorithm (A VLGA), which adopts a variable-length individual encoding and enables individuals with different lengths in a population to evolve in their own search space. An adaptive length changing mechanism is introduced which can extend or shorten an individual to guide it to explore in a better search space. Thus, A VLGA is able to adaptively concentrate on a smaller but more fruitful search space and yield better solutions more quickly. Experimental results on 6 high-dimensional datasets reveal that A VLGA performs significantly better than existing methods.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Feature selection is an essential technique which has been widely applied in data mining. Recent research has shown that a good feature subset can be obtained by using evolutionary computing (EC) approaches as a wrapper. However, most feature selection methods based on EC use a fixed-length encoding to represent feature subsets. When this fixed length representation is applied to high-dimensional data, it requires a large amount of memory space as well as a high computational cost. Moreover, this representation is inflexible and may limit the performance of EC because of a too huge search space. In this paper, we propose an Adaptive- Variable-Length Genetic Algorithm (A VLGA), which adopts a variable-length individual encoding and enables individuals with different lengths in a population to evolve in their own search space. An adaptive length changing mechanism is introduced which can extend or shorten an individual to guide it to explore in a better search space. Thus, A VLGA is able to adaptively concentrate on a smaller but more fruitful search space and yield better solutions more quickly. Experimental results on 6 high-dimensional datasets reveal that A VLGA performs significantly better than existing methods.