Discussions of neural network solvers for inverse optimization problems

T. Aoyama, U. Nagashima
{"title":"Discussions of neural network solvers for inverse optimization problems","authors":"T. Aoyama, U. Nagashima","doi":"10.1109/ICONIP.2002.1202872","DOIUrl":null,"url":null,"abstract":"We discuss a neural network solver for the inverse optimization problem. The problem is that input/teaching data include defects, and predict the defect values, and estimate functional relation between the input/output data. The network structure of the solver is series-connected three-layer neural networks. Information propagates among the networks alternatively, and the defects are complemented by the correlations among data. On ideal structure-activity data, we could make the prediction within 0.17-3.6% error.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss a neural network solver for the inverse optimization problem. The problem is that input/teaching data include defects, and predict the defect values, and estimate functional relation between the input/output data. The network structure of the solver is series-connected three-layer neural networks. Information propagates among the networks alternatively, and the defects are complemented by the correlations among data. On ideal structure-activity data, we could make the prediction within 0.17-3.6% error.
反优化问题的神经网络求解器的讨论
讨论了逆优化问题的神经网络求解器。问题是输入/教学数据包含缺陷,并预测缺陷值,估计输入/输出数据之间的函数关系。求解器的网络结构为串联的三层神经网络。信息在网络之间交替传播,数据之间的相关性弥补了缺陷。在理想的结构-活性数据上,我们可以在0.17-3.6%的误差范围内进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信