{"title":"Discussions of neural network solvers for inverse optimization problems","authors":"T. Aoyama, U. Nagashima","doi":"10.1109/ICONIP.2002.1202872","DOIUrl":null,"url":null,"abstract":"We discuss a neural network solver for the inverse optimization problem. The problem is that input/teaching data include defects, and predict the defect values, and estimate functional relation between the input/output data. The network structure of the solver is series-connected three-layer neural networks. Information propagates among the networks alternatively, and the defects are complemented by the correlations among data. On ideal structure-activity data, we could make the prediction within 0.17-3.6% error.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss a neural network solver for the inverse optimization problem. The problem is that input/teaching data include defects, and predict the defect values, and estimate functional relation between the input/output data. The network structure of the solver is series-connected three-layer neural networks. Information propagates among the networks alternatively, and the defects are complemented by the correlations among data. On ideal structure-activity data, we could make the prediction within 0.17-3.6% error.