A Heuristic Exploration of Retraining-free Weight-Sharing for CNN Compression

Etienne Dupuis, D. Novo, Ian O’Connor, A. Bosio
{"title":"A Heuristic Exploration of Retraining-free Weight-Sharing for CNN Compression","authors":"Etienne Dupuis, D. Novo, Ian O’Connor, A. Bosio","doi":"10.1109/ASP-DAC52403.2022.9712487","DOIUrl":null,"url":null,"abstract":"The computational workload involved in Convolutional Neural Networks (CNNs) is typically out of reach for low-power embedded devices. The scientific literature provides a large number of approximation techniques to address this problem. Among them, the Weight-Sharing (WS) technique gives promising results, but it requires carefully determining the shared values for each layer of a given CNN. As the number of possible solutions grows exponentially with the number of layers, the WS Design Space Exploration (DSE) time can easily explode for state-of-the-art CNNs. In this paper, we propose a new heuristic approach to drastically reduce the exploration time without sacrificing the quality of the output. The results carried out on recent CNNs (GoogleNet [1], ResNet50V2 [2], MobileNetV2 [3], InceptionV3 [4], and EfficientNet [5]), trained with the ImageNet [6] dataset, show over 5× memory compression at an acceptable accuracy loss (complying with the MLPerf [7] quality target) without any retraining step and in less than 10 hours. Our code is publicly available on GitHub [8].","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC52403.2022.9712487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The computational workload involved in Convolutional Neural Networks (CNNs) is typically out of reach for low-power embedded devices. The scientific literature provides a large number of approximation techniques to address this problem. Among them, the Weight-Sharing (WS) technique gives promising results, but it requires carefully determining the shared values for each layer of a given CNN. As the number of possible solutions grows exponentially with the number of layers, the WS Design Space Exploration (DSE) time can easily explode for state-of-the-art CNNs. In this paper, we propose a new heuristic approach to drastically reduce the exploration time without sacrificing the quality of the output. The results carried out on recent CNNs (GoogleNet [1], ResNet50V2 [2], MobileNetV2 [3], InceptionV3 [4], and EfficientNet [5]), trained with the ImageNet [6] dataset, show over 5× memory compression at an acceptable accuracy loss (complying with the MLPerf [7] quality target) without any retraining step and in less than 10 hours. Our code is publicly available on GitHub [8].
CNN压缩中无再训练权重共享的启发式探索
卷积神经网络(cnn)所涉及的计算工作量通常是低功耗嵌入式设备无法达到的。科学文献提供了大量的近似技术来解决这个问题。其中,Weight-Sharing (WS)技术给出了令人满意的结果,但它需要仔细确定给定CNN的每一层的共享值。随着可能的解决方案数量随着层数呈指数级增长,WS设计空间探索(DSE)时间对于最先进的cnn来说很容易爆炸。在本文中,我们提出了一种新的启发式方法,在不牺牲输出质量的情况下大幅减少探索时间。使用ImageNet[6]数据集训练的最新cnn (GoogleNet [1], ResNet50V2 [2], MobileNetV2 [3], InceptionV3[4]和EfficientNet[5])的结果显示,在可接受的精度损失(符合MLPerf[7]质量目标)下,无需任何再训练步骤,在不到10小时内显示超过5倍的内存压缩。我们的代码在GitHub[8]上是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信