On-line adaptive T-S fuzzy neural control for active suspension systems

Wei-Yen Wang, Ming-Chang Chen, Yi-Hsing Chien, Tsu-Tian Lee
{"title":"On-line adaptive T-S fuzzy neural control for active suspension systems","authors":"Wei-Yen Wang, Ming-Chang Chen, Yi-Hsing Chien, Tsu-Tian Lee","doi":"10.1109/FUZZY.2009.5277406","DOIUrl":null,"url":null,"abstract":"Vehicles are not always driven on smooth roads. If parts of the suspension system fail, it becomes an uncertain system. Thus we need an approximator to remodel this uncertain system to maintain good control. In this paper, we propose a new method to on-line identify the uncertain suspension system and design a T-S fuzzy-neural controller to control it. We first use the mean value theorem to transform the active suspension system into a virtual linearized system. In addition, an on-line adaptive T-S fuzzy-neural modeling approach to the design of robust tracking controllers is developed for the uncertain active suspension system. Finally, this paper gives simulation results of an uncertain suspension system with the on-line adaptive T-S fuzzy-neural controller, and is shown to provide good effectiveness under the conditions that parts of the suspension system fail.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vehicles are not always driven on smooth roads. If parts of the suspension system fail, it becomes an uncertain system. Thus we need an approximator to remodel this uncertain system to maintain good control. In this paper, we propose a new method to on-line identify the uncertain suspension system and design a T-S fuzzy-neural controller to control it. We first use the mean value theorem to transform the active suspension system into a virtual linearized system. In addition, an on-line adaptive T-S fuzzy-neural modeling approach to the design of robust tracking controllers is developed for the uncertain active suspension system. Finally, this paper gives simulation results of an uncertain suspension system with the on-line adaptive T-S fuzzy-neural controller, and is shown to provide good effectiveness under the conditions that parts of the suspension system fail.
主动悬架系统在线自适应T-S模糊神经控制
车辆并不总是在平坦的道路上行驶。如果悬挂系统的某些部分失效,它就变成了一个不确定系统。因此,我们需要一个近似器来对这个不确定系统进行改造,以保持良好的控制。本文提出了一种在线辨识不确定悬架系统的新方法,并设计了一种T-S模糊神经控制器对其进行控制。首先利用中值定理将主动悬架系统转化为虚拟线性化系统。此外,针对不确定主动悬架系统,提出了一种在线自适应T-S模糊神经建模的鲁棒跟踪控制器设计方法。最后给出了基于在线自适应T-S模糊神经控制器的不确定悬架系统的仿真结果,表明该控制器在悬架系统局部失效的情况下具有良好的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信