Wei-Yen Wang, Ming-Chang Chen, Yi-Hsing Chien, Tsu-Tian Lee
{"title":"On-line adaptive T-S fuzzy neural control for active suspension systems","authors":"Wei-Yen Wang, Ming-Chang Chen, Yi-Hsing Chien, Tsu-Tian Lee","doi":"10.1109/FUZZY.2009.5277406","DOIUrl":null,"url":null,"abstract":"Vehicles are not always driven on smooth roads. If parts of the suspension system fail, it becomes an uncertain system. Thus we need an approximator to remodel this uncertain system to maintain good control. In this paper, we propose a new method to on-line identify the uncertain suspension system and design a T-S fuzzy-neural controller to control it. We first use the mean value theorem to transform the active suspension system into a virtual linearized system. In addition, an on-line adaptive T-S fuzzy-neural modeling approach to the design of robust tracking controllers is developed for the uncertain active suspension system. Finally, this paper gives simulation results of an uncertain suspension system with the on-line adaptive T-S fuzzy-neural controller, and is shown to provide good effectiveness under the conditions that parts of the suspension system fail.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Vehicles are not always driven on smooth roads. If parts of the suspension system fail, it becomes an uncertain system. Thus we need an approximator to remodel this uncertain system to maintain good control. In this paper, we propose a new method to on-line identify the uncertain suspension system and design a T-S fuzzy-neural controller to control it. We first use the mean value theorem to transform the active suspension system into a virtual linearized system. In addition, an on-line adaptive T-S fuzzy-neural modeling approach to the design of robust tracking controllers is developed for the uncertain active suspension system. Finally, this paper gives simulation results of an uncertain suspension system with the on-line adaptive T-S fuzzy-neural controller, and is shown to provide good effectiveness under the conditions that parts of the suspension system fail.