Fishing Spot Detection Using Sea Water Temperature Pattern by Nonlinear Clustering

T. Shimura, Motoharu Sonogashira, Hidekazu Kasahara, M. Iiyama
{"title":"Fishing Spot Detection Using Sea Water Temperature Pattern by Nonlinear Clustering","authors":"T. Shimura, Motoharu Sonogashira, Hidekazu Kasahara, M. Iiyama","doi":"10.1109/OCEANSE.2019.8867301","DOIUrl":null,"url":null,"abstract":"Determining fishing spots is an important decision-making for fishery. Fishers use environmental pattern information such as tide and vortex, and this process can be thought of as a good fishing spot determination problem from sea water temperature patterns. In this paper, we address this problem by a machine learning approach. Following an assumption that sea water temperature patterns of good fishing spots form some clusters, we discover these clusters and construct a classifier that discriminates whether an input sea water temperature pattern corresponds to good fishing spots clusters. We evaluated the effectiveness of our method using fishery data.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Determining fishing spots is an important decision-making for fishery. Fishers use environmental pattern information such as tide and vortex, and this process can be thought of as a good fishing spot determination problem from sea water temperature patterns. In this paper, we address this problem by a machine learning approach. Following an assumption that sea water temperature patterns of good fishing spots form some clusters, we discover these clusters and construct a classifier that discriminates whether an input sea water temperature pattern corresponds to good fishing spots clusters. We evaluated the effectiveness of our method using fishery data.
基于非线性聚类的海水温度模式渔点检测
渔点的确定是渔业的重要决策。渔民利用潮汐和漩涡等环境模式信息,这个过程可以被认为是一个很好的从海水温度模式确定渔点的问题。在本文中,我们通过机器学习方法解决了这个问题。假设好渔点的海水温度模式形成一些集群,我们发现这些集群,并构建一个分类器来判别输入的海水温度模式是否与好渔点集群相对应。我们使用渔业数据评估了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信