Towards Health (Aware) Recommender Systems

Hanna Schäfer, Santiago Hors-Fraile, Raghav Pavan Karumur, André Calero Valdez, A. Said, Helma Torkamaan, Tom Ulmer, C. Trattner
{"title":"Towards Health (Aware) Recommender Systems","authors":"Hanna Schäfer, Santiago Hors-Fraile, Raghav Pavan Karumur, André Calero Valdez, A. Said, Helma Torkamaan, Tom Ulmer, C. Trattner","doi":"10.1145/3079452.3079499","DOIUrl":null,"url":null,"abstract":"People increasingly use the Internet for obtaining information regarding diseases, diagnoses and available treatments. Currently, many online health portals already provide non-personalized health information in the form of articles. However, it can be challenging to find information relevant to one's condition, interpret this in context, and understand the medical terms and relationships. Recommender Systems (RS) already help these systems perform precise information filtering. In this short paper, we look one step ahead and show the progress made towards RS helping users find personalized, complex medical interventions or support them with preventive healthcare measures. We identify key challenges that need to be addressed for RS to offer the kind of decision support needed in high-risk domains like healthcare.","PeriodicalId":245682,"journal":{"name":"Proceedings of the 2017 International Conference on Digital Health","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079452.3079499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

Abstract

People increasingly use the Internet for obtaining information regarding diseases, diagnoses and available treatments. Currently, many online health portals already provide non-personalized health information in the form of articles. However, it can be challenging to find information relevant to one's condition, interpret this in context, and understand the medical terms and relationships. Recommender Systems (RS) already help these systems perform precise information filtering. In this short paper, we look one step ahead and show the progress made towards RS helping users find personalized, complex medical interventions or support them with preventive healthcare measures. We identify key challenges that need to be addressed for RS to offer the kind of decision support needed in high-risk domains like healthcare.
迈向健康(意识)推荐系统
人们越来越多地使用互联网获取有关疾病、诊断和可用治疗的信息。目前,许多在线健康门户网站已经以文章的形式提供非个性化的健康信息。然而,找到与一个人的病情相关的信息,在上下文中解释这些信息,并理解医学术语和关系,可能是具有挑战性的。推荐系统(RS)已经帮助这些系统执行精确的信息过滤。在这篇短文中,我们向前迈进了一步,并展示了RS在帮助用户找到个性化、复杂的医疗干预措施或为他们提供预防性医疗措施方面取得的进展。我们确定了RS需要解决的关键挑战,以便为医疗保健等高风险领域提供所需的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信