Deep Learning

R. Parr, Kris K. Hauser
{"title":"Deep Learning","authors":"R. Parr, Kris K. Hauser","doi":"10.1142/9789811241086_0007","DOIUrl":null,"url":null,"abstract":"This course provides the knowledge to construct and use deep neural networks for image and text analysis. The course starts from the basic concepts to understand, train and test neural networks for classification and regression. It introduces image analysis and then evolves to (Fully) Convolutional Neural Networks for image classification, object detection, and (semantic/instance) segmentation. In the sequence, it provides an introduction to text analysis and then covers Recurrent Neural Networks, Attention, Transformers and applications in text analysis. Prior knowledge in optimization, linear algebra, statistics, machine learning, image/text processing and analysis is important, but the basic concepts are provided whenever they are required. It is important the student can code in Python and desirable prior knowledge in PyTorch, and other packages usually used in python scripts for image and text processing, graphics display, and machine learning.","PeriodicalId":143059,"journal":{"name":"Fintech for Finance Professionals","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fintech for Finance Professionals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811241086_0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This course provides the knowledge to construct and use deep neural networks for image and text analysis. The course starts from the basic concepts to understand, train and test neural networks for classification and regression. It introduces image analysis and then evolves to (Fully) Convolutional Neural Networks for image classification, object detection, and (semantic/instance) segmentation. In the sequence, it provides an introduction to text analysis and then covers Recurrent Neural Networks, Attention, Transformers and applications in text analysis. Prior knowledge in optimization, linear algebra, statistics, machine learning, image/text processing and analysis is important, but the basic concepts are provided whenever they are required. It is important the student can code in Python and desirable prior knowledge in PyTorch, and other packages usually used in python scripts for image and text processing, graphics display, and machine learning.
深度学习
本课程提供构建和使用深度神经网络进行图像和文本分析的知识。本课程从基本概念出发,了解、训练和测试用于分类和回归的神经网络。它引入了图像分析,然后发展到(全)卷积神经网络用于图像分类,目标检测和(语义/实例)分割。在序列中,它提供了一个介绍文本分析,然后涵盖递归神经网络,注意力,变形和应用在文本分析。优化、线性代数、统计学、机器学习、图像/文本处理和分析方面的先验知识很重要,但只要需要,就会提供基本概念。重要的是,学生可以用Python编写代码,并在PyTorch中获得所需的先验知识,以及通常在Python脚本中用于图像和文本处理,图形显示和机器学习的其他包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信