{"title":"Classification of Diabetic Retinopathy using Stacked Autoencoder-Based Deep Neural Network","authors":"Yasir Eltigani Ali Mustaf, Bashir Hassan Ismail","doi":"10.53409/mnaa.jcsit1102","DOIUrl":null,"url":null,"abstract":"Diagnosis of diabetic retinopathy (DR) via images of colour fundus requires experienced clinicians to determine the presence and importance of a large number of small characteristics. This work proposes and named Adapted Stacked Auto Encoder (ASAE-DNN) a novel deep learning framework for diabetic retinopathy (DR), three hidden layers have been used to extract features and classify them then use a Softmax classification. The models proposed are checked on Messidor's data set, including 800 training images and 150 test images. Exactness, accuracy, time, recall and calculation are assessed for the outcomes of the proposed models. The results of these studies show that the model ASAE-DNN was 97% accurate.","PeriodicalId":125707,"journal":{"name":"Journal of Computational Science and Intelligent Technologies","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Intelligent Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53409/mnaa.jcsit1102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Diagnosis of diabetic retinopathy (DR) via images of colour fundus requires experienced clinicians to determine the presence and importance of a large number of small characteristics. This work proposes and named Adapted Stacked Auto Encoder (ASAE-DNN) a novel deep learning framework for diabetic retinopathy (DR), three hidden layers have been used to extract features and classify them then use a Softmax classification. The models proposed are checked on Messidor's data set, including 800 training images and 150 test images. Exactness, accuracy, time, recall and calculation are assessed for the outcomes of the proposed models. The results of these studies show that the model ASAE-DNN was 97% accurate.