H. Öftering, Patrick Rumpelt, A. Küchler, F. Jenau, R. Fritsche
{"title":"Time-dependent dielectric behavior of mineral oil under the influence of different DC voltage conditions","authors":"H. Öftering, Patrick Rumpelt, A. Küchler, F. Jenau, R. Fritsche","doi":"10.1109/ICDL.2019.8796584","DOIUrl":null,"url":null,"abstract":"This contribution contains extensive studies about the time-dependent dielectric behavior of mineral oil. Therefore, different measurement systems are used in order to investigate several dielectric phenomena of a 5 mm oil gap. Polarization and depolarization current measurements, as well as electro-optic Kerr-effect measurements, verify the significant influence of space charges on the time-dependent electrical conductivity and the electric field. In addition, a simulation model, based on the drift and diffusion theory, is presented. Therefore, all the gained knowledge about the charge carrier processes, which are measured with the two different test setups, are included in the simulation model.","PeriodicalId":102217,"journal":{"name":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","volume":"29 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2019.8796584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This contribution contains extensive studies about the time-dependent dielectric behavior of mineral oil. Therefore, different measurement systems are used in order to investigate several dielectric phenomena of a 5 mm oil gap. Polarization and depolarization current measurements, as well as electro-optic Kerr-effect measurements, verify the significant influence of space charges on the time-dependent electrical conductivity and the electric field. In addition, a simulation model, based on the drift and diffusion theory, is presented. Therefore, all the gained knowledge about the charge carrier processes, which are measured with the two different test setups, are included in the simulation model.