{"title":"Introductory Chapter: Ramifications of Incomplete Knowledge","authors":"J. Hessling","doi":"10.5772/intechopen.86265","DOIUrl":null,"url":null,"abstract":"Mathematical statistics has long been widely practiced in many fields of science [1]. Nevertheless, statistical methods have remained remarkably intact ever since the pioneering work [2] of R.A. Fisher and his contemporary scientists early in the twentieth century. Recently however, it has been claimed that most scientific results are wrong [3], due to malpractice of statistical methods. Errors of that kind are not caused by imperfect methodology but rather, reflect lack of understanding and proper interpretation. In this introductory chapter, a different cause of errors is addressed—the ubiquitous practice of willful ignorance (WI) [4]. Usually it is applied with intent to remedy lack of knowledge and simplify or merely enable application of established statistical methods. Virtually all statistical approaches require complete statistical knowledge at some stage. In practice though, that can hardly ever be established. For instance, Bayes estimation relies upon prior knowledge. Any equal a priori probability assumption (“uninformed prior”) does hardly disguise some facts are not known, which may be grossly deceiving. Uniform distribution is a specific assumption like any other. Willful ignorance of that kind must not be confused with knowledge to which we associate some degree of confidence. It may be better to explore rather than ignore consequences of what is not known at all. That will require novel perspectives on how mathematical statistics is practiced, which is the scope of this book.","PeriodicalId":381809,"journal":{"name":"Statistical Methodologies","volume":"51 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.86265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical statistics has long been widely practiced in many fields of science [1]. Nevertheless, statistical methods have remained remarkably intact ever since the pioneering work [2] of R.A. Fisher and his contemporary scientists early in the twentieth century. Recently however, it has been claimed that most scientific results are wrong [3], due to malpractice of statistical methods. Errors of that kind are not caused by imperfect methodology but rather, reflect lack of understanding and proper interpretation. In this introductory chapter, a different cause of errors is addressed—the ubiquitous practice of willful ignorance (WI) [4]. Usually it is applied with intent to remedy lack of knowledge and simplify or merely enable application of established statistical methods. Virtually all statistical approaches require complete statistical knowledge at some stage. In practice though, that can hardly ever be established. For instance, Bayes estimation relies upon prior knowledge. Any equal a priori probability assumption (“uninformed prior”) does hardly disguise some facts are not known, which may be grossly deceiving. Uniform distribution is a specific assumption like any other. Willful ignorance of that kind must not be confused with knowledge to which we associate some degree of confidence. It may be better to explore rather than ignore consequences of what is not known at all. That will require novel perspectives on how mathematical statistics is practiced, which is the scope of this book.