{"title":"TunnelScatter: Low Power Communication for Sensor Tags using Tunnel Diodes","authors":"Ambuj Varshney, Andreas Soleiman, T. Voigt","doi":"10.1145/3300061.3345451","DOIUrl":null,"url":null,"abstract":"Due to extremely low power consumption, backscatter has become the transmission mechanism of choice for battery-free devices that operate on harvested energy. However, a limitation of recent backscatter systems is that the communication range scales with the strength of the ambient carrier signal~(ACS). This means that to achieve a long-range, a backscatter tag needs to reflect a strong ACS, which in practice means that it needs to be close to an ACS emitter. We present TunnelScatter, a mechanism that overcomes this limitation. TunnelScatter uses a tunnel diode-based radio frequency oscillator to enable transmissions when there is no ACS, and the same oscillator as a reflection amplifier to support backscatter transmissions when the ACS is weak. Our results show that even without an ACS, TunnelScatter is able to transmit through several walls covering a distance of 18m while consuming a peak biasing power of \\SI57 \\micro\\watt. Based on TunnelScatter, we design battery-free sensor tags, called TunnelTags, that can sense physical phenomena and transmit them using the TunnelScatter mechanism.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"96 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3345451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Due to extremely low power consumption, backscatter has become the transmission mechanism of choice for battery-free devices that operate on harvested energy. However, a limitation of recent backscatter systems is that the communication range scales with the strength of the ambient carrier signal~(ACS). This means that to achieve a long-range, a backscatter tag needs to reflect a strong ACS, which in practice means that it needs to be close to an ACS emitter. We present TunnelScatter, a mechanism that overcomes this limitation. TunnelScatter uses a tunnel diode-based radio frequency oscillator to enable transmissions when there is no ACS, and the same oscillator as a reflection amplifier to support backscatter transmissions when the ACS is weak. Our results show that even without an ACS, TunnelScatter is able to transmit through several walls covering a distance of 18m while consuming a peak biasing power of \SI57 \micro\watt. Based on TunnelScatter, we design battery-free sensor tags, called TunnelTags, that can sense physical phenomena and transmit them using the TunnelScatter mechanism.