Efficient Parameter Synthesis Using Optimized State Exploration Strategies

É. André, H. G. Nguyen, L. Petrucci
{"title":"Efficient Parameter Synthesis Using Optimized State Exploration Strategies","authors":"É. André, H. G. Nguyen, L. Petrucci","doi":"10.1109/ICECCS.2017.28","DOIUrl":null,"url":null,"abstract":"Parametric timed automata are a powerful formalism to reason about, model and verify real-time systems in which some constraints are unknown, or subject to uncertainty. Parameter synthesis using parametric timed automata is very sensitive to the state space explosion problem. To mitigate this problem, we propose two new exploration orders, i. e., the \"ranking strategy\" and the \"priority based strategy\", and compare them with existing strategies. We consider both complete parameter synthesis, and counterexample synthesis where the analysis stops as soon as some parameter valuations are found. Experimental results using IMITATOR show that our new strategies significantly outperform existing approaches, especially in the counterexample synthesis.","PeriodicalId":114056,"journal":{"name":"2017 22nd International Conference on Engineering of Complex Computer Systems (ICECCS)","volume":"5 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd International Conference on Engineering of Complex Computer Systems (ICECCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCS.2017.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Parametric timed automata are a powerful formalism to reason about, model and verify real-time systems in which some constraints are unknown, or subject to uncertainty. Parameter synthesis using parametric timed automata is very sensitive to the state space explosion problem. To mitigate this problem, we propose two new exploration orders, i. e., the "ranking strategy" and the "priority based strategy", and compare them with existing strategies. We consider both complete parameter synthesis, and counterexample synthesis where the analysis stops as soon as some parameter valuations are found. Experimental results using IMITATOR show that our new strategies significantly outperform existing approaches, especially in the counterexample synthesis.
基于优化状态探索策略的高效参数综合
参数时间自动机是一种强大的形式,用于推理,建模和验证实时系统,其中一些约束是未知的,或受制于不确定性。利用参数时间自动机进行参数综合对状态空间爆炸问题非常敏感。为了缓解这一问题,本文提出了两种新的探索顺序,即“排序策略”和“基于优先级的策略”,并与现有策略进行了比较。我们考虑了完全参数综合和反例综合,在反例综合中,一旦发现一些参数值,分析就会停止。实验结果表明,我们的新策略明显优于现有的方法,特别是在反例综合方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信