A Multimodal Approach for Evaluating Algal Bloom Severity Using Deep Learning

Fei Zhao, Chengcui Zhang, Sheikh Abujar
{"title":"A Multimodal Approach for Evaluating Algal Bloom Severity Using Deep Learning","authors":"Fei Zhao, Chengcui Zhang, Sheikh Abujar","doi":"10.1109/ICMEW59549.2023.00097","DOIUrl":null,"url":null,"abstract":"Harmful algal blooms (HABs) can have detrimental impacts on aquatic ecosystems, human health, and the economy. This paper presents a novel multimodal deep learning approach for assessing the severity levels of HABs, which will help to take necessary measures to mitigate the negative impacts. Unlike the other SOTA methods, the proposed method leverages three modalities: satellite image, elevation, and temperature data, to capture algal information. In particular, it utilizes an Attention-UNet-based encoder for satellite and elevation data, and a BiL-STM encoder for temperature data, to extract effective feature embeddings from respective modalities. In addition, we propose a geometric mean-based multimodal focal loss that modulates loss contributions of different modalities as a function of the confidence of different modalities. Our approach outperforms the SOTA unimodal and ensemble methods on tick-tick bloom (TTB) dataset, achieving a region-averaged root mean squared error (RA-RMSE) score of 0.8165.","PeriodicalId":111482,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW59549.2023.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Harmful algal blooms (HABs) can have detrimental impacts on aquatic ecosystems, human health, and the economy. This paper presents a novel multimodal deep learning approach for assessing the severity levels of HABs, which will help to take necessary measures to mitigate the negative impacts. Unlike the other SOTA methods, the proposed method leverages three modalities: satellite image, elevation, and temperature data, to capture algal information. In particular, it utilizes an Attention-UNet-based encoder for satellite and elevation data, and a BiL-STM encoder for temperature data, to extract effective feature embeddings from respective modalities. In addition, we propose a geometric mean-based multimodal focal loss that modulates loss contributions of different modalities as a function of the confidence of different modalities. Our approach outperforms the SOTA unimodal and ensemble methods on tick-tick bloom (TTB) dataset, achieving a region-averaged root mean squared error (RA-RMSE) score of 0.8165.
利用深度学习评估藻华严重程度的多模态方法
有害藻华(HABs)会对水生生态系统、人类健康和经济产生有害影响。本文提出了一种新的多模态深度学习方法来评估赤潮的严重程度,这将有助于采取必要的措施减轻赤潮的负面影响。与其他SOTA方法不同,该方法利用三种模式:卫星图像、高程和温度数据来捕获藻类信息。特别是,它利用了一个基于attention - unet的卫星和高程数据编码器,以及一个基于bill - stm的温度数据编码器,从各自的模态中提取有效的特征嵌入。此外,我们提出了一种基于几何均值的多模态焦点损失,将不同模态的损失贡献调节为不同模态置信度的函数。我们的方法在tick-tick bloom (TTB)数据集上优于SOTA单峰和集成方法,实现了0.8165的区域平均均方根误差(RA-RMSE)得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信