A Multi-Class Hinge Loss for Conditional GANs

Ilya Kavalerov, W. Czaja
{"title":"A Multi-Class Hinge Loss for Conditional GANs","authors":"Ilya Kavalerov, W. Czaja","doi":"10.1109/WACV48630.2021.00133","DOIUrl":null,"url":null,"abstract":"We propose a new algorithm to incorporate class conditional information into the critic of GANs via a multi-class generalization of the commonly used Hinge loss that is compatible with both supervised and semi-supervised settings. We study the compromise between training a state of the art generator and an accurate classifier simultaneously, and propose a way to use our algorithm to measure the degree to which a generator and critic are class conditional. We show the trade-off between a generator-critic pair respecting class conditioning inputs and generating the highest quality images. With our multi-hinge loss modification we are able to improve Inception Scores and Frechet Inception Distance on the Imagenet dataset.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"4 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We propose a new algorithm to incorporate class conditional information into the critic of GANs via a multi-class generalization of the commonly used Hinge loss that is compatible with both supervised and semi-supervised settings. We study the compromise between training a state of the art generator and an accurate classifier simultaneously, and propose a way to use our algorithm to measure the degree to which a generator and critic are class conditional. We show the trade-off between a generator-critic pair respecting class conditioning inputs and generating the highest quality images. With our multi-hinge loss modification we are able to improve Inception Scores and Frechet Inception Distance on the Imagenet dataset.
条件gan的多类铰链损失
我们提出了一种新的算法,通过对常用的铰链损失进行多类泛化,将类条件信息整合到gan的批评中,该算法兼容监督和半监督设置。我们研究了同时训练一个最先进的生成器和一个准确的分类器之间的折衷,并提出了一种使用我们的算法来衡量生成器和评论家在多大程度上是类条件的方法。我们展示了生成器-评论家对尊重类条件输入和生成最高质量图像之间的权衡。通过我们的多铰链损失修改,我们能够提高Imagenet数据集上的Inception Scores和Frechet Inception Distance。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信