CNN ARCHITECTURES FOR GRAPH DATA

Fernando Gama, A. Marques, G. Leus, Alejandro Ribeiro
{"title":"CNN ARCHITECTURES FOR GRAPH DATA","authors":"Fernando Gama, A. Marques, G. Leus, Alejandro Ribeiro","doi":"10.1109/GlobalSIP.2018.8646348","DOIUrl":null,"url":null,"abstract":"In this ongoing work, we describe several architectures that generalize convolutional neural networks (CNNs) to process signals supported on graphs. The general idea of the replace time invariant filters with graph filters to generate convolutional features and to replace pooling with sampling schemes for graph signals. The different architectures are compared and the key trade offs are identified. Numerical simulations with both synthetic and real-world data are used to illustrate the advantages of the proposed approaches.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this ongoing work, we describe several architectures that generalize convolutional neural networks (CNNs) to process signals supported on graphs. The general idea of the replace time invariant filters with graph filters to generate convolutional features and to replace pooling with sampling schemes for graph signals. The different architectures are compared and the key trade offs are identified. Numerical simulations with both synthetic and real-world data are used to illustrate the advantages of the proposed approaches.
图数据的CNN架构
在这项正在进行的工作中,我们描述了几种将卷积神经网络(cnn)推广到处理图上支持的信号的架构。用图滤波器代替时不变滤波器来生成卷积特征,用图信号的采样方案代替池化。对不同的体系结构进行了比较,并确定了关键的权衡。用合成数据和实际数据的数值模拟来说明所提出方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信