Voltage Stability Constrained Low-Carbon Generation & Transmission Expansion Planning

V. Asgharian, M. Abdelaziz
{"title":"Voltage Stability Constrained Low-Carbon Generation & Transmission Expansion Planning","authors":"V. Asgharian, M. Abdelaziz","doi":"10.1109/CCECE47787.2020.9255798","DOIUrl":null,"url":null,"abstract":"Environmental concerns and limits on CO2 emissions entail expanding the capacity of renewable generation units. However, the increase in the renewable generation capacity can significantly impact the hosting power system voltage stability. Therefore, the consideration of voltage stability in the expansion planning problem is of an increasing importance. In this paper, we present a multi-stage low carbon voltage stability constrained generation and transmission expansion planning (G&TEP) model. The developed G&TEP model accounts for the investment and operation costs of generation units and transmission lines, as well as the load and wind curtailment costs, and determines the optimal installation year and location for transmission lines and generation units to meet the anticipated load demand increase. The voltage collapse proximity indicator (VCPI), which is a line voltage stability index based technique, is used to account for the voltage stability of the developed expansion plans. To this end, the VCPI is incorporated in the G&TEP model to guarantee an acceptable level of voltage stability for the developed expansion plans over the planning horizon. The effectiveness of the proposed framework is validated using numerical cases studies on the IEEE 24-bus RTS test system developed in General Algebraic Modeling System (GAMS) environment.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"54 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Environmental concerns and limits on CO2 emissions entail expanding the capacity of renewable generation units. However, the increase in the renewable generation capacity can significantly impact the hosting power system voltage stability. Therefore, the consideration of voltage stability in the expansion planning problem is of an increasing importance. In this paper, we present a multi-stage low carbon voltage stability constrained generation and transmission expansion planning (G&TEP) model. The developed G&TEP model accounts for the investment and operation costs of generation units and transmission lines, as well as the load and wind curtailment costs, and determines the optimal installation year and location for transmission lines and generation units to meet the anticipated load demand increase. The voltage collapse proximity indicator (VCPI), which is a line voltage stability index based technique, is used to account for the voltage stability of the developed expansion plans. To this end, the VCPI is incorporated in the G&TEP model to guarantee an acceptable level of voltage stability for the developed expansion plans over the planning horizon. The effectiveness of the proposed framework is validated using numerical cases studies on the IEEE 24-bus RTS test system developed in General Algebraic Modeling System (GAMS) environment.
电压稳定约束下的低碳发电和输电扩展规划
环境问题和对二氧化碳排放的限制需要扩大可再生发电装置的容量。然而,可再生能源发电容量的增加会显著影响宿主电力系统的电压稳定性。因此,在扩容规划问题中,电压稳定性的考虑变得越来越重要。本文提出了一种多阶段低碳电压稳定约束发电与输电扩展规划(G&TEP)模型。开发的G&TEP模型考虑了发电机组和输电线路的投资和运行成本,以及负荷和弃风成本,确定了输电线路和发电机组的最佳安装年份和位置,以满足预期的负荷需求增长。电压崩溃接近指示器(VCPI)是一种基于线路电压稳定指标的技术,用于描述所制定的扩容方案的电压稳定性。为此,VCPI被纳入G&TEP模型,以保证在规划范围内开发的扩展计划具有可接受的电压稳定性水平。通过在通用代数建模系统(GAMS)环境下开发的IEEE 24总线RTS测试系统的数值案例研究,验证了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信