{"title":"On the approximation error for approximating convex bodies using multiobjective optimization","authors":"Andreas Lohne, Fangyuan Zhao, L. Shao","doi":"10.23952/asvao.3.2021.3.08","DOIUrl":null,"url":null,"abstract":"A polyhedral approximation of a convex body can be calculated by solving approximately an associated multiobjective convex program (MOCP). An MOCP can be solved approximately by Benson type algorithms, which compute outer and inner polyhedral approximations of the problem’s upper image. Polyhedral approximations of a convex body can be obtained from polyhedral approximations of the upper image of the associated MOCP. We provide error bounds in terms of the Hausdorff distance for the polyhedral approximation of a convex body in dependence of the stopping criteria of the primal and dual Benson algorithm which is applied to the associated MOCP.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"16 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.3.2021.3.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A polyhedral approximation of a convex body can be calculated by solving approximately an associated multiobjective convex program (MOCP). An MOCP can be solved approximately by Benson type algorithms, which compute outer and inner polyhedral approximations of the problem’s upper image. Polyhedral approximations of a convex body can be obtained from polyhedral approximations of the upper image of the associated MOCP. We provide error bounds in terms of the Hausdorff distance for the polyhedral approximation of a convex body in dependence of the stopping criteria of the primal and dual Benson algorithm which is applied to the associated MOCP.