Effects of transcutaneous spinal DC stimulation on plasticity of the spinal circuits and corticospinal tracts in humans

Tomofumi Yamaguchi, S. Fujimoto, Y. Otaka, Satoshi Tanaka
{"title":"Effects of transcutaneous spinal DC stimulation on plasticity of the spinal circuits and corticospinal tracts in humans","authors":"Tomofumi Yamaguchi, S. Fujimoto, Y. Otaka, Satoshi Tanaka","doi":"10.1109/NER.2013.6695925","DOIUrl":null,"url":null,"abstract":"The aim of this exploratory study was to investigate the effects of transcutaneous spinal direct current stimulation (tsDCS) on the plasticity of spinal circuits and corticospinal tracts in humans. Ten healthy volunteers participated in this single-blind, sham-controlled cross-over study. Reciprocal inhibition and D1 inhibition of the soleus H-reflex (experiment 1), and motor evoked potentials (MEPs) of the tibialis anterior and soleus muscles induced by transcranial magnetic stimulation over the motor cortex (experiment 2) were recorded before and after anodal tsDCS (2 mA, 15 min) or sham (2 mA, 15 sec) delivered at the thoracic spine level. In experiment 1, anodal tsDCS significantly decreased the amount of D1 inhibition at least 15 min after the end of stimulation, but did not affect the amount of reciprocal inhibition. In experiment 2, anodal tsDCS did not affect the amplitude of MEPs. The present results provide further evidence that tsDCS can induce short-term plasticity in human spinal reflex circuits.","PeriodicalId":156952,"journal":{"name":"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2013.6695925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The aim of this exploratory study was to investigate the effects of transcutaneous spinal direct current stimulation (tsDCS) on the plasticity of spinal circuits and corticospinal tracts in humans. Ten healthy volunteers participated in this single-blind, sham-controlled cross-over study. Reciprocal inhibition and D1 inhibition of the soleus H-reflex (experiment 1), and motor evoked potentials (MEPs) of the tibialis anterior and soleus muscles induced by transcranial magnetic stimulation over the motor cortex (experiment 2) were recorded before and after anodal tsDCS (2 mA, 15 min) or sham (2 mA, 15 sec) delivered at the thoracic spine level. In experiment 1, anodal tsDCS significantly decreased the amount of D1 inhibition at least 15 min after the end of stimulation, but did not affect the amount of reciprocal inhibition. In experiment 2, anodal tsDCS did not affect the amplitude of MEPs. The present results provide further evidence that tsDCS can induce short-term plasticity in human spinal reflex circuits.
经皮脊髓直流电刺激对人脊髓回路和皮质脊髓束可塑性的影响
本探索性研究的目的是探讨经皮脊髓直流电刺激(tsDCS)对人类脊髓回路和皮质脊髓束可塑性的影响。10名健康志愿者参加了这项单盲、假对照的交叉研究。记录胸椎水平经颅磁刺激(2 mA, 15 min)或假手术(2 mA, 15 sec)前后经颅磁刺激对比目鱼h反射(实验1)的相互抑制和D1抑制,以及经颅磁刺激(实验2)诱导的胫骨前肌和比目鱼肌运动诱发电位(MEPs)。实验1中,在刺激结束后至少15 min,负极tsDCS显著降低D1抑制量,但不影响互抑量。在实验2中,负极tsDCS不影响mep的振幅。本研究结果进一步证明了tsDCS可以诱导人脊髓反射回路的短期可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信