{"title":"A neocortex model implementation on reconfigurable logic with streaming memory","authors":"Christopher N. Vutsinas, T. Taha, Kenneth L. Rice","doi":"10.1109/IPDPS.2008.4536533","DOIUrl":null,"url":null,"abstract":"In this paper we study the acceleration of a new class of cognitive processing applications based on the structure of the neocortex. Our focus is on a model of the visual cortex used for image recognition developed by George and Hawkins. We propose techniques to accelerate the algorithm using reconfigurable logic, specifically a streaming memory architecture utilizing available off-chip memory. We discuss the design of a streaming memory access unit enabling a large number of processing elements to be placed on a single FPGA thus increasing throughput. We present an implementation of our approach on a Cray XD1 and discuss possible extension to further increase throughput. Our results indicate that using a two FPGA design with streaming memory gives a speedup of 71.9 times over a purely software implementation.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2008.4536533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper we study the acceleration of a new class of cognitive processing applications based on the structure of the neocortex. Our focus is on a model of the visual cortex used for image recognition developed by George and Hawkins. We propose techniques to accelerate the algorithm using reconfigurable logic, specifically a streaming memory architecture utilizing available off-chip memory. We discuss the design of a streaming memory access unit enabling a large number of processing elements to be placed on a single FPGA thus increasing throughput. We present an implementation of our approach on a Cray XD1 and discuss possible extension to further increase throughput. Our results indicate that using a two FPGA design with streaming memory gives a speedup of 71.9 times over a purely software implementation.