A Study of Priors for Relevance-Based Language Modelling of Recommender Systems

Daniel Valcarce, Javier Parapar, Álvaro Barreiro
{"title":"A Study of Priors for Relevance-Based Language Modelling of Recommender Systems","authors":"Daniel Valcarce, Javier Parapar, Álvaro Barreiro","doi":"10.1145/2792838.2799677","DOIUrl":null,"url":null,"abstract":"Probabilistic modelling of recommender systems naturally introduces the concept of prior probability into the recommendation task. Relevance-Based Language Models, a principled probabilistic query expansion technique in Information Retrieval, has been recently adapted to the item recommendation task with success. In this paper, we study the effect of the item and user prior probabilities under that framework. We adapt two priors from the document retrieval field and then we propose other two new probabilistic priors. Evidence gathered from experimentation indicates that a linear prior for the neighbour and a probabilistic prior based on Dirichlet smoothing for the items improve the quality of the item recommendation ranking.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"38 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2799677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Probabilistic modelling of recommender systems naturally introduces the concept of prior probability into the recommendation task. Relevance-Based Language Models, a principled probabilistic query expansion technique in Information Retrieval, has been recently adapted to the item recommendation task with success. In this paper, we study the effect of the item and user prior probabilities under that framework. We adapt two priors from the document retrieval field and then we propose other two new probabilistic priors. Evidence gathered from experimentation indicates that a linear prior for the neighbour and a probabilistic prior based on Dirichlet smoothing for the items improve the quality of the item recommendation ranking.
基于关联的推荐系统语言建模的先验研究
推荐系统的概率建模自然地将先验概率的概念引入到推荐任务中。基于关联的语言模型是信息检索中一种有原则的概率查询扩展技术,近年来已成功地应用于项目推荐任务中。在此框架下,我们研究了项目和用户先验概率的影响。我们采用了文档检索领域的两个先验,然后提出了另外两个新的概率先验。从实验中收集的证据表明,邻居的线性先验和基于Dirichlet平滑的概率先验提高了项目推荐排名的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信