A randomwalk based model incorporating social information for recommendations

Shang Shang, S. Kulkarni, P. Cuff, Pan Hui
{"title":"A randomwalk based model incorporating social information for recommendations","authors":"Shang Shang, S. Kulkarni, P. Cuff, Pan Hui","doi":"10.1109/MLSP.2012.6349732","DOIUrl":null,"url":null,"abstract":"Collaborative filtering (CF) is one of the most popular approaches to build a recommendation system. In this paper, we propose a hybrid collaborative filtering model based on a Makovian random walk to address the data sparsity and cold start problems in recommendation systems. More precisely, we construct a directed graph whose nodes consist of items and users, together with item content, user profile and social network information. We incorporate user's ratings into edge settings in the graph model. The model provides personalized recommendations and predictions to individuals and groups. The proposed algorithms are evaluated on MovieLens and Epinions datasets. Experimental results show that the proposed methods perform well compared with other graph-based methods, especially in the cold start case.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"13 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Collaborative filtering (CF) is one of the most popular approaches to build a recommendation system. In this paper, we propose a hybrid collaborative filtering model based on a Makovian random walk to address the data sparsity and cold start problems in recommendation systems. More precisely, we construct a directed graph whose nodes consist of items and users, together with item content, user profile and social network information. We incorporate user's ratings into edge settings in the graph model. The model provides personalized recommendations and predictions to individuals and groups. The proposed algorithms are evaluated on MovieLens and Epinions datasets. Experimental results show that the proposed methods perform well compared with other graph-based methods, especially in the cold start case.
基于随机漫步的模型,结合社会信息进行推荐
协同过滤(CF)是构建推荐系统最常用的方法之一。本文提出了一种基于马可夫随机漫步的混合协同过滤模型,以解决推荐系统中的数据稀疏性和冷启动问题。更准确地说,我们构建了一个有向图,其节点由项目和用户组成,以及项目内容、用户简介和社交网络信息。我们将用户的评分合并到图模型的边缘设置中。该模型为个人和团体提供个性化的建议和预测。在MovieLens和Epinions数据集上对提出的算法进行了评估。实验结果表明,与其他基于图的方法相比,该方法具有良好的性能,特别是在冷启动情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信