{"title":"On the Biological Plausibility of Orthogonal Initialisation for Solving Gradient Instability in Deep Neural Networks","authors":"Nikolay Manchev, Michael W. Spratling","doi":"10.1109/ISCMI56532.2022.10068489","DOIUrl":null,"url":null,"abstract":"Initialising the synaptic weights of artificial neural networks (ANNs) with orthogonal matrices is known to alleviate vanishing and exploding gradient problems. A major objection against such initialisation schemes is that they are deemed biologically implausible as they mandate factorization techniques that are difficult to attribute to a neurobiological process. This paper presents two initialisation schemes that allow a network to naturally evolve its weights to form orthogonal matrices, provides theoretical analysis that pre-training orthogonalisation always converges, and empirically confirms that the proposed schemes outperform randomly initialised recurrent and feedforward networks.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"32 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Initialising the synaptic weights of artificial neural networks (ANNs) with orthogonal matrices is known to alleviate vanishing and exploding gradient problems. A major objection against such initialisation schemes is that they are deemed biologically implausible as they mandate factorization techniques that are difficult to attribute to a neurobiological process. This paper presents two initialisation schemes that allow a network to naturally evolve its weights to form orthogonal matrices, provides theoretical analysis that pre-training orthogonalisation always converges, and empirically confirms that the proposed schemes outperform randomly initialised recurrent and feedforward networks.