On the Biological Plausibility of Orthogonal Initialisation for Solving Gradient Instability in Deep Neural Networks

Nikolay Manchev, Michael W. Spratling
{"title":"On the Biological Plausibility of Orthogonal Initialisation for Solving Gradient Instability in Deep Neural Networks","authors":"Nikolay Manchev, Michael W. Spratling","doi":"10.1109/ISCMI56532.2022.10068489","DOIUrl":null,"url":null,"abstract":"Initialising the synaptic weights of artificial neural networks (ANNs) with orthogonal matrices is known to alleviate vanishing and exploding gradient problems. A major objection against such initialisation schemes is that they are deemed biologically implausible as they mandate factorization techniques that are difficult to attribute to a neurobiological process. This paper presents two initialisation schemes that allow a network to naturally evolve its weights to form orthogonal matrices, provides theoretical analysis that pre-training orthogonalisation always converges, and empirically confirms that the proposed schemes outperform randomly initialised recurrent and feedforward networks.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"32 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Initialising the synaptic weights of artificial neural networks (ANNs) with orthogonal matrices is known to alleviate vanishing and exploding gradient problems. A major objection against such initialisation schemes is that they are deemed biologically implausible as they mandate factorization techniques that are difficult to attribute to a neurobiological process. This paper presents two initialisation schemes that allow a network to naturally evolve its weights to form orthogonal matrices, provides theoretical analysis that pre-training orthogonalisation always converges, and empirically confirms that the proposed schemes outperform randomly initialised recurrent and feedforward networks.
正交初始化求解深度神经网络梯度不稳定性的生物合理性研究
用正交矩阵初始化人工神经网络(ANNs)的突触权值可以缓解梯度消失和爆炸问题。对此类初始化方案的主要反对意见是,它们被认为在生物学上是不可信的,因为它们要求使用难以归因于神经生物学过程的因子分解技术。本文提出了两种初始化方案,允许网络自然地进化其权重以形成正交矩阵,提供了预训练正交化总是收敛的理论分析,并经验证实了所提出的方案优于随机初始化的循环和前馈网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信