Rede Neural IncResU-Net para Inferência de Sinais Eletrocardiograma a partir de Sinais Fotopletismograma

Rafael Albuquerque Pinto, Hygor Rodrigues de Oliveira, Eduardo Souto, Rafael Giusti
{"title":"Rede Neural IncResU-Net para Inferência de Sinais Eletrocardiograma a partir de Sinais Fotopletismograma","authors":"Rafael Albuquerque Pinto, Hygor Rodrigues de Oliveira, Eduardo Souto, Rafael Giusti","doi":"10.5753/sbcas.2023.230117","DOIUrl":null,"url":null,"abstract":"O eletrocardiograma (ECG) é um exame médico que mede a atividade elétrica do coração, enquanto o fotopletismograma (PPG) mede as alterações no volume sanguíneo por meio de tecnologia baseada em luz. Embora ambos os métodos sejam usados para monitorar a frequência cardíaca, o ECG é considerado o método padrão ouro para o diagnóstico de doenças cardíacas porque fornece informações adicionais sobre o funcionamento do coração. Apesar dos esforços para integrar a detecção de ECG em dispositivos vestíveis para monitoramento cardíaco contínuo e confiável, os sensores PPG são atualmente a principal solução viável. Este trabalho propõe um método denominado PPG2ECG, baseado no mapeamento entre domínio, aplicando um conjunto de filtros de convolução, utilizando uma arquitetura de rede neural U-net Inception, para inferir sinais ECG a partir de sinais PPG. Para avaliar a eficácia do método proposto, foram adotadas duas estratégias de avaliação, baseadas em modelos personalizados e generalizados. Os resultados obtidos demonstraram valores médios de erros médio quadráticos de 0,015 e 0,026, respectivamente.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"46 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.230117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

O eletrocardiograma (ECG) é um exame médico que mede a atividade elétrica do coração, enquanto o fotopletismograma (PPG) mede as alterações no volume sanguíneo por meio de tecnologia baseada em luz. Embora ambos os métodos sejam usados para monitorar a frequência cardíaca, o ECG é considerado o método padrão ouro para o diagnóstico de doenças cardíacas porque fornece informações adicionais sobre o funcionamento do coração. Apesar dos esforços para integrar a detecção de ECG em dispositivos vestíveis para monitoramento cardíaco contínuo e confiável, os sensores PPG são atualmente a principal solução viável. Este trabalho propõe um método denominado PPG2ECG, baseado no mapeamento entre domínio, aplicando um conjunto de filtros de convolução, utilizando uma arquitetura de rede neural U-net Inception, para inferir sinais ECG a partir de sinais PPG. Para avaliar a eficácia do método proposto, foram adotadas duas estratégias de avaliação, baseadas em modelos personalizados e generalizados. Os resultados obtidos demonstraram valores médios de erros médio quadráticos de 0,015 e 0,026, respectivamente.
IncResU-Net神经网络用于从光容积图信号推断心电图信号
心电图(ECG)是一种测量心脏电活动的医学检查,而光容积图(PPG)则通过光技术测量血容量的变化。虽然这两种方法都用于监测心率,但心电图被认为是诊断心脏病的金标准方法,因为它提供了关于心脏功能的额外信息。尽管人们一直在努力将心电检测集成到可穿戴设备中,以实现持续可靠的心脏监测,但PPG传感器是目前主要可行的解决方案。这项工作提出了一种称为PPG2ECG,基于域之间的映射关系,运用一系列的卷积过滤器使用一种神经网络的网络结构,《盗梦空间》,来推断出心电信号在信号分。为了评价该方法的有效性,采用了两种评价策略,一种是基于定制模型,另一种是基于广义模型。结果表明,均方误差的均值分别为0.015和0.026。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信