The Start-Up Performance of Pulsating Heat Pipe With Communicating Pipe at Different Inclination Angles

F. Shang, Fan Shilong, Jianhong Liu
{"title":"The Start-Up Performance of Pulsating Heat Pipe With Communicating Pipe at Different Inclination Angles","authors":"F. Shang, Fan Shilong, Jianhong Liu","doi":"10.1115/mnhmt2019-4015","DOIUrl":null,"url":null,"abstract":"\n The pulsating heat pipe (PHP) is a passive cooling device, which has the advantages of simple structure, high heat transfer performance and low production cost. The complex vapor-liquid phase change occurs in the in the initial stage of PHP. In this work, we explore the start-up performance of PHP at different inclination angles and the experiment shows that start-up performance is respectively different when the angles are 0°, 45°, 90°, 135° and 180°. Since the gravitational auxiliary function, the working fluid in the communicating pipe which takes longer time to vaporize change phase earlier than that in PHP’s loop when the angles are 0° and 45°. Nevertheless, when the angle is 90°, the phase change of working fluid in communicating pipe and in the loop occurs at the same time. Meanwhile, the oscillating mode affects the stability of the starting and heat transfer performance of the PHP.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"18 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-4015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pulsating heat pipe (PHP) is a passive cooling device, which has the advantages of simple structure, high heat transfer performance and low production cost. The complex vapor-liquid phase change occurs in the in the initial stage of PHP. In this work, we explore the start-up performance of PHP at different inclination angles and the experiment shows that start-up performance is respectively different when the angles are 0°, 45°, 90°, 135° and 180°. Since the gravitational auxiliary function, the working fluid in the communicating pipe which takes longer time to vaporize change phase earlier than that in PHP’s loop when the angles are 0° and 45°. Nevertheless, when the angle is 90°, the phase change of working fluid in communicating pipe and in the loop occurs at the same time. Meanwhile, the oscillating mode affects the stability of the starting and heat transfer performance of the PHP.
带连通管的脉动热管在不同倾角下的启动性能
脉动热管(PHP)是一种被动冷却装置,具有结构简单、传热性能高、生产成本低等优点。PHP在初始阶段发生复杂的气液相变化。在这项工作中,我们探索了PHP在不同倾角下的启动性能,实验表明,在倾角为0°、45°、90°、135°和180°时,启动性能分别不同。由于重力辅助作用的存在,当角度为0°和45°时,汽化时间较长的通信管道内工质比PHP循环内的工质更早地发生相变。而当夹角为90°时,管道内工质的相变与回路内工质的相变同时发生。同时,振荡模式影响了PHP启动和传热性能的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信