Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers

Lung-Hao Lee, Man-Chen Hung, Chien-Huan Lu, Chang-Hao Chen, Po-Lei Lee, K. Shyu
{"title":"Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers","authors":"Lung-Hao Lee, Man-Chen Hung, Chien-Huan Lu, Chang-Hao Chen, Po-Lei Lee, K. Shyu","doi":"10.18653/V1/2021.SMM4H-1.18","DOIUrl":null,"url":null,"abstract":"This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.","PeriodicalId":378985,"journal":{"name":"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task","volume":"8 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/2021.SMM4H-1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.
使用RoBERTa变压器对推文自我报告不良妊娠结局和潜在COVID-19病例的分类
本研究描述了我们为SMM4H 2021共享任务提出的模型设计。我们对RoBERTa转换器及其连接的分类器的语言模型进行了微调,以完成推文对不良妊娠结局(Task 4)和潜在COVID-19病例(Task 5)的分类任务。两个任务的评价指标都是正面类的f1分。在Task 4中,我们的最高分是0.93,超过了平均分0.925。对于Task 5,我们的最好值0.75超过了平均值0.745。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信