Multimodal or Text? Retrieval or BERT? Benchmarking Classifiers for the Shared Task on Hateful Memes

Vasiliki Kougia, John Pavlopoulos
{"title":"Multimodal or Text? Retrieval or BERT? Benchmarking Classifiers for the Shared Task on Hateful Memes","authors":"Vasiliki Kougia, John Pavlopoulos","doi":"10.18653/v1/2021.woah-1.24","DOIUrl":null,"url":null,"abstract":"The Shared Task on Hateful Memes is a challenge that aims at the detection of hateful content in memes by inviting the implementation of systems that understand memes, potentially by combining image and textual information. The challenge consists of three detection tasks: hate, protected category and attack type. The first is a binary classification task, while the other two are multi-label classification tasks. Our participation included a text-based BERT baseline (TxtBERT), the same but adding information from the image (ImgBERT), and neural retrieval approaches. We also experimented with retrieval augmented classification models. We found that an ensemble of TxtBERT and ImgBERT achieves the best performance in terms of ROC AUC score in two out of the three tasks on our development set.","PeriodicalId":166161,"journal":{"name":"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)","volume":"51 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.woah-1.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Shared Task on Hateful Memes is a challenge that aims at the detection of hateful content in memes by inviting the implementation of systems that understand memes, potentially by combining image and textual information. The challenge consists of three detection tasks: hate, protected category and attack type. The first is a binary classification task, while the other two are multi-label classification tasks. Our participation included a text-based BERT baseline (TxtBERT), the same but adding information from the image (ImgBERT), and neural retrieval approaches. We also experimented with retrieval augmented classification models. We found that an ensemble of TxtBERT and ImgBERT achieves the best performance in terms of ROC AUC score in two out of the three tasks on our development set.
多模态还是文本?检索还是BERT?仇恨表情包共享任务的基准分类器
仇恨表情包共享任务是一项挑战,旨在通过引入理解表情包的系统来检测表情包中的仇恨内容,可能会将图像和文本信息结合起来。挑战包括三个检测任务:仇恨、受保护类别和攻击类型。第一个是二元分类任务,另外两个是多标签分类任务。我们的参与包括基于文本的BERT基线(TxtBERT),相同但添加了来自图像的信息(ImgBERT),以及神经检索方法。我们还尝试了检索增强分类模型。我们发现TxtBERT和ImgBERT的集合在我们的开发集中的三个任务中的两个任务中达到了ROC AUC得分的最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信