Triangle Counting on GPU Using Fine-Grained Task Distribution

Lin Hu, Naiqing Guan, Lei Zou
{"title":"Triangle Counting on GPU Using Fine-Grained Task Distribution","authors":"Lin Hu, Naiqing Guan, Lei Zou","doi":"10.1109/ICDEW.2019.000-8","DOIUrl":null,"url":null,"abstract":"Due to the irregularity of graph data, designing an efficient GPU-based graph algorithm is always a challenging task. Inefficient memory access and work imbalance often limit GPU-based graph computing, even though GPU provides a massively parallelism computing fashion. To address that, in this paper, we propose a fine-grained task distribution strategy for triangle counting task. Extensive experiments and theoretical analysis confirm the superiority of our algorithm over both large real and synthetic graph datasets.","PeriodicalId":186190,"journal":{"name":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","volume":"64 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2019.000-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Due to the irregularity of graph data, designing an efficient GPU-based graph algorithm is always a challenging task. Inefficient memory access and work imbalance often limit GPU-based graph computing, even though GPU provides a massively parallelism computing fashion. To address that, in this paper, we propose a fine-grained task distribution strategy for triangle counting task. Extensive experiments and theoretical analysis confirm the superiority of our algorithm over both large real and synthetic graph datasets.
使用细粒度任务分配的GPU三角形计数
由于图形数据的不规则性,设计一种高效的基于gpu的图形算法一直是一项具有挑战性的任务。低效的内存访问和工作不平衡经常限制基于GPU的图形计算,即使GPU提供了大规模并行计算方式。为了解决这个问题,本文提出了一种三角计数任务的细粒度任务分配策略。大量的实验和理论分析证实了我们的算法在大型真实和合成图数据集上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信